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Cold Start - PArt 1 2016

Dr.Daria Sorokina explained this in her presentation “The Joy Of Search”
Example 1: New Harry Potter Book
Suppose a new Harry Potter book has just been released and many people are searching for it on
Amazon. On the first day of its release, even if the book ranks lower in search results, users who
really want to buy it will still find it by conducting an exhaustive search. However, over time, the
search ranking for the book will gradually increase as more people start searching for it and
purchasing it. If by the seventh day, the changes in search ranking are not reflected as desired,
Amazon may make manual adjustments to improve the book's ranking in search results.

Example 2: Popular Electronic Gadget
Let's consider a popular electronic gadget that has been recently launched. On the first day of its
release, it might rank lower in search results, but users who are interested in buying it will still
find it by conducting a search. Over time, as more people start searching for the gadget and
purchasing it, the search ranking for the gadget will gradually increase. If by the seventh day, the
changes in search ranking are not reflected as desired, Amazon may make manual adjustments to
improve the gadget's ranking in search results.

Summary:

In short, Amazon uses a combination of automated algorithms and manual adjustments to rank
products in search results. When a new product is released, it may initially rank lower in search
results, but over time its search ranking will gradually increase as more people search for it and
purchase it. If the changes in search ranking are not reflected as desired, Amazon may make
manual adjustments to improve the product's ranking. The goal is to ensure that users find the
products they are looking for quickly and easily.
The A9 team may do this for Harry Potter, but this is impossible to do this for every product as it
is simply not scalable.
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ABSTRACT

New products in e-commerce platforms su�er from cold

start, both in recommendation and search. In this study, we

present experiments to deal with cold start in search by pre-

dicting priors for behavioral features in learning to rank set

up. The o�ine results show that our technique generates

priors for behavioral features which closely track posterior

values. The online A/B test on 140MM queries shows that

treatment with priors improves new products impressions

and increased customers engagement pointing to their rele-

vance and quality.
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1 INTRODUCTION

Learning to rank (LTR) models rely on several features to

rank documents for a given query. Many LTR features are

based on users’ interactions with documents such as impres-

sions, clicks, and purchases [3, 5]. We call these features

behavioral features. Ranking models are trained to optimize

user engagement, and therefore, such behavioral features

tend to be the most important training signals. However,

new and tail products that do not have user engagement

lack behavioral features and hence are ranked as irrelevant,

which in turn further excludes them from catching user en-

gagement. It takes time for them to gather enough behavioral

signals to show up at their fair ranking position. This leads to
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the causality dilemma: No behavioral data causes poor rank-

ing which in turn results in new products having a reduced

likelihood of accruing behavioral data. This phenomenon is

referred to as cold start problem and poses serious concerns

from bad customer experience to lost revenue opportunity.

There are several studies related to cold start in search

for web search. For example, research on recency ranking

focus on identifying recency sensitive queries and speci�-

cally training ranking models for them, e.g., breaking-news

queries, weather information, etc. [1, 2]. Temporal IR deals

with ranking during di�erent time of the day [4]. However,

product search is mainly dominated by transactional queries

where new products need to surface for both existing generic

queries (exploration) and speci�c ones (exploitation).

Our approach is to predict "prior" values for behavioral

features for new products. These priors are initial values of

behavioral features at the time of new product’s introduc-

tion to the search index. Priors give two-fold bene�ts: i) they

let us incorporate perceived importance for the product as

certain degree of con�dence and ii) they increase the explo-

ration of new products so they can accumulate behavioral

data. For example, a high prior value for a click-related be-

havioral feature describes the algorithm’s con�dence in the

product’s ability to receive clicks. We present o�ine and

online experiments to further explain this.

2 APPROACH

In relevance ranking, behavioral features are often impor-

tant because they encode user engagement, which is the

target of learning to rank systems [3, 5]. The behavioral fea-

tures, along with lexical and semantic features, are used to

measure relevance (r ) between query (q) and product (d) as

P(r |q,d). However, only products that already allured user

engagement have informative behavioral features. The solu-

tion to the cold start problem should be a good exploration

mechanism with the �exibility to adapt to the new user data.

We propose to estimate the prior values of the behavioral

features for new products based on their attributes, such as

brand, type, color, artist, author, etc. Precisely, we consider

attributes such as the number of clicks the brand received

historically, or the number of times the movies of an actor

were watched in the past. We formulate the prior estimation

as a machine learning problem where we learn a model that

predicts the posterior values of the behavioral features using

the attributes of the products. The posterior values predicted

https://doi.org/10.1145/3366424.3382705
https://doi.org/10.1145/3366424.3382705


WWW ’20 Companion, April 20–24, 2020, Taipei, Taiwan Gupta, Dreossi, Bakus, Lin, Salaka.

by the model are then used as the prior of the corresponding

behavioral features. At ranking time, we substitute the ini-

tial behavioral features values with their prior values. After

a certain time window, the new products receive user en-

gagement, and we replace the collected prior values by the

posterior ones. If the prior values are good estimates for the

posterior values, then cold start can be alleviated. Our regres-

sion model for the prior estimation is de�ned as: P
j
i = f (®xi ),

where i is a product, ®xi is the vector of attributes of i , j is

a behavioral feature, and P
j
i is the prior for the behavioral

feature j of the product i .

Theoretically, the new products should be explored with

some probability and later the decision to update that proba-

bility should be data driven based on the exploration result.

Priors provide a good mechanism for this exploration in LTR

framework. In the most naive way, priors can follow uniform

distribution but the success of this approach lies in ability

to generate priors that tightly follow the actual posterior

distribution.

3 EXPERIMENTS AND RESULTS

For evaluation our methods, we carried o�ine and online

experiments. We give details of the model training and eval-

uation with results and analyses in the following sections.

Model Implementation. Due to nonlinear interaction among

product attributes, we used gradient boosted trees for regres-

sion. The input to the regression model is a vector of the

attributes of a product, and the output is the predicted behav-

ioral feature value. We predicted priors for three behavioral

features: i) click rate, ii) purchase rate, and iii) consume rate.1

For the training data, we took around 3MM media products

for which behavioral data are available.

O�line Prior Estimation. Here we measure how close the

predictions of our priors are to the values of posteriors. The

performance is measured in terms of goodness of �t (R-

squared) and Pearson’s correlation. The models were trained

on historical data and evaluated on a disjoint test set. Model

performances are reported in Table 1.

Table 1: O�line evaluation on 3MMmedia products across books,

music, and video category for three behavioral features (click, pur-

chase, and consume rates). Cells report Person’s correlation and R-

squared scores (above and below, respectively).

Click rate Purchase rate Consume rate

Pearson’s Corr. 0.9304 0.9357 0.9475

R-Squared 0.8993 0.8754 0.8978

Online Prior E�ectiveness. The priors give us �exibility to

abstract the cold start treatment out of the system architec-

ture of LTR. The ranker is agnostic to where the behavior

feature value is coming from, prior or posterior. For evalu-

ation, we ran an A/B test using control (baseline) with no

1Consume rate de�nes a rate at which customers read, listen or watch a

media product like digital book, music, or video.

priors and treatment with priors. One bene�t of evaluating

with online test is that it alleviates the bias caused by lacking

initial behavioral feature values. The o�ine historical data

cannot tell us whether new products initialized with priors

and warmed up in ranking receive more clicks or consump-

tions. This leads to the di�culty of estimating o�ine e�ect

of priors on ranking metrics such as NDCG or MRR without

explicit human judgment.

Table 2: Online results of A/B test with baseline (without priors)

and control (with priors). The statistical signi�cance is denoted by
∗ (p-value < 0.05).

System Impression Click Consumption

Priors +3.23%∗ +1.35%∗ +5.42%∗

The test was run for 4 weeks and the user behavior was

tracked to see: i) if the new products are explored more, and

ii) if higher exploration entails stronger customer engage-

ment. The former is measured by the impression rate of new

products, while the latter is measured in terms of click and

consumption rate. Note that since the activities associated

with new products are only a small portion of all activities,

we collect only the search data attributed to new products.

Without such �ltering, the signal would be overwhelmed by

the noise coming from the activities unrelated to the new

products. Table 2 shows the results of our A/B test.

It can be noticed from Table 2 that incorporation of priors

help surface higher number of new products. Furthermore,

it instills positive customer behavior denoted by higher click

and consumption rate. It means, the customer engaged sig-

ni�cantly more (p-value < 0.05) with the new products in

treatment compared to control.

4 REMARKS

We presented a framework to encode cold start treatment

through priors of behavioral features. The o�ine evalua-

tion suggests that ML system can accurately predict priors

that closely track posterior values of new product features.

This is work in-progress and initial results are encouraging.

The A/B test on 140MM searches strongly suggest that the

presented method impresses high number of new products

which attracts signi�cantly positive customer engagement.
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ABSTRACT

Cold start is a challenge in product search. Profuse literature ad-

dresses related problems such as bias and diversity in search, and

cold start is a classic topic in recommender systems research. While

search cold start might be seen conceptually as a particular case

in such areas, we �nd that available solutions fail to speci�cally

and practically solve the cold-start problem in product search. The

problem is complex as exposing new products may come at the

expense of primary business metrics (e.g. revenue), and involves a

complex balance between customer satisfaction, seller satisfaction,

business performance, short-term gains and long-term value.

In this paper, we propose a principled approach to deal with cold

start in a large-scale e-commerce search system. We discuss how

product ranking is a�ected by non-behavioral topical relevance and

behavioral popularity, and their role in introducing biases that result

in cold-start for ranking new products. Our approach applies Em-

pirical Bayes to model behavioral information via non-behavioral

signals in terms of priors, and e�ectively estimate true engagement

posterior updates. We report comprehensive o�ine and online ex-

periments over large datasets that show the e�ectiveness of our

methods to address cold start, and provide further insights. An on-

line A/B test on 50 million queries shows a signi�cant improvement

in new product impressions by 13.53% and a signi�cant increase

in new product purchase by 11.14%, with overall purchases up by

0.08%, highlighting the empirical e�ectiveness of the approach.

CCS CONCEPTS

• Applied computing→ Online shopping; • Information sys-

tems → Novelty in information retrieval.

KEYWORDS

Cold start, discovery, exploration, bias, feedback loop, empirical

Bayes, e-commerce search

ACM Reference Format:

Cuize Han, Pablo Castells, Parth Gupta, Xu Xu and Vamsi Salaka. 2022.

Addressing Cold Start in Product Search via Empirical Bayes. In Proceedings

of the 31st ACM International Conference on Information and Knowledge

Management (CIKM ’22), October 17–21, 2022, Atlanta, GA, USA. ACM, New

York, NY, USA, 11 pages. https://doi.org/10.1145/3511808.3557066

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9236-5/22/10. . . $15.00
https://doi.org/10.1145/3511808.3557066

1 INTRODUCTION
E-commerce search plays a critical role in connecting the speci�c

needs of customers with relevant products. At the same time, it is

a service connecting sellers with buyers. A growing e-commerce

website continuously onboards new customers, sellers and sees

many new products being listed everyweek.Modern search systems

employ learning-to-rank (LTR) solutions to rank relevant products

against customer queries. In such systems, many LTR features – the

most e�ective ones – are based on users’ interactions with products,

such as impressions, clicks, and purchases [19, 47]. Ranking models

are trained to optimize user engagement, and therefore, such behav-

ioral features tend to be the most important training signals [49].

However, new and tail products with missing or sparse user

engagement lack reliable behavioral features, and are hence ranked

as irrelevant, which further excludes them in turn from catching up

with user engagement. It takes a long time for such items to gather

enough behavioral signals to show up at their fair ranking position.

This leads to the causality dilemma: no behavioral data causes poor

ranking which in turn results in new products having a reduced like-

lihood of accruing behavioral data. This phenomenon is referred to

as the cold start problem and poses serious concerns, from poor cus-

tomer experience to seller frustration and lost revenue opportunity.

New products su�er from various biases in e-commerce search

[32]: i) item selection bias: products with strong behavioral features

are returned again and again in response to queries, and customers

engage with them, forming a reinforcing loop that creates a bias

against new products; ii) position bias: even when new products

make it to the result set, they are likely to be ranked at low positions,

that users are less likely to examine; and iii) trust bias: users trust

well-known brands and rely on customer reviews, so they engage

less with new products lacking them. Solutions for cold start in e-

commerce should explore new products related to customer queries

even if they lack observed interaction [14].

However, the problem is challenging as exposing new products

may come at the expense of key business metrics (e.g. revenue), and

involves a complex balance between customer satisfaction, seller

satisfaction, business performance, short-term gains and long-term

value. On one hand, over-exploration of new products can hurt the

business metrics while exploring irrelevant or bad quality prod-

ucts can damage customer trust. On the other hand, new product

exploration is bene�cial for the long-term health of the market-

place, provides a wider selection to customers, and encourages the

incorporation of new sellers and therefore growth of business.

In this paper, we propose a principled approach to deal with cold

start in a large-scale e-commerce search system. We �rst lay out

a framework where we consider how product ranking is a�ected

by non-behavioral topical relevance and behavioral popularity, and

their role in the feedback loop that introduces biases resulting in

cold start for ranking new products. We analyze the root of the

cold-start problem in i) the lack of generalization power of non-

behavioral features, requiring the help from behavioral features’

https://doi.org/10.1145/3511808.3557066
https://doi.org/10.1145/3511808.3557066


CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Cuize Han, Pablo Castells, Parth Gupta, Xu Xu and Vamsi Salaka

memorization power; and ii) the naive use of behavioral features,

bringing signi�cant bias against cold-start items.

Upon this view, we present an approach to deal with cold start

while preserving a good tradeo� with key business metrics. Our

approach applies Empirical Bayes to model behavioral informa-

tion via non-behavioral signals in terms of priors, and e�ectively

estimate true engagement posteriors. We report comprehensive

o�ine and online experiments in a large-scale e-commerce search

system that show the e�ectiveness of our methods to address cold

start, and provide further insights. An online A/B test on 50 million

queries shows a signi�cant improvement in new product impres-

sions by 13.53% and a signi�cant increase in new product purchase

by 11.14%, with overall purchases up by 0.08%, highlighting the

empirical e�ectiveness of the approach.

The paper is organized as follows: we start with an overview and

discussion of cold start in search and recommendation and related

work in Section 2. The framework to formalize the challenges and

de�ne the components of a working system handling cold start

is presented in Section 3. We then present our speci�c approach,

based on online feature exploration via Empirical Bayes in Section 4.

We report experimental results with a simulated and a real search

system in Sections 5 and 6. Following this, we present in Section 7

an enhanced version of our system that achieves improved online

results. We end with some concluding remarks in Section 8.

2 BACKGROUND AND RELATED WORK

Modern e-commerce search engines address product selection and

ranking as a supervised learning to rank task [41, 43]. The inputs

for ranking models include product features, query features, and

product-query features. Features can be further categorized into

behavioral and non-behavioral. The latter are derived from intrinsic

properties of products and queries, such as product category, brand,

price or delivery speed, as well as associated textual content (title,

about, description, etc.), images, video, etc.; and query properties

such as length, speci�city or categorization. Functional features

relating products and queries, such as classic text IR models (e.g.

tf-idf and BM25), are particularly e�ective in this scope.

Behavioral features, on their side, get created as the result of the

interaction between customers and products through impressions,

clicks, purchases, and other actions. Customer-product interaction

records are also used as labels for learning to rank model train-

ing, under the understanding that no one is better placed than

customers themselves to tell which products are relevant for a

query [41], particularly so when voting with their wallet. For this

reason, product-query behavioral features are the ones the ranking

models rely on the most when ranking products: a product that

semantically matches a query is not relevant if the customers who

enter the search do not want to buy the product [49].

With the importance of behavioral features, and the role of user-

item interaction in the learning objective, e-commerce search can be

seen, in a way, as a hybrid system involving both search and recom-

mendation [48]: semantic matching certainly plays a part in select-

ing relevant search results (particularly an initial candidate set), but

customer-query-product interaction records typically have a heav-

ier role in obtaining a boost in search relevance and business perfor-

mance. As a consequence, e-commerce search is greatly impacted by

cold start compared to search engines in other domains, such as web

search, where semantic features may play a more prominent part.

New items typically cross the cold start barrier through very

speci�c queries where a small result set size gives them a chance

to be exposed to interested customers with a narrow, very well

speci�ed need. From that point on, items get a chance to hope-

fully emerge from behavioral starvation upon the initial atten-

tion spark. But this process is slow and venturesome, as it re-

lies on sparse events and a non-negligible degree of luck. Spon-

sored results, listings and promotions are also essential instru-

ments for sellers to push their new products into the search feed-

back wheel. Such mechanisms are however collateral to result

search relevance, involve cost and e�ort for sellers, and a chal-

lenging competition that is not easy to overcome. With a fast

stream of incoming new products in large-scale online markets,

cold start becomes a pressing problem and a substantial source

of missed opportunity for shoppers, merchants and the service [14].

2.1 Cold start in search

Work speci�cally dealing with search cold start is not easy to �nd in

the literature. Haldar et al. [15], for instance, report experiences in

dealing with cold start in the Airbnb search system. The explored

approaches include the injection of new items in search results.

Strategies in this line are also described by Taank et al. in a Google

patent [42]. Haldar et al. describe unsolved tradeo�s and complex-

ities involved in this approach. The authors were able to draw

some improvement by training customer engagement predictors in

the absence of observed customer feedback. More recently, Gupta

et al. [14] developed a similar approach, where the engagement

prediction was used both to smooth down variance in observed in-

teraction, and to spark an initial engagement signal that would help

new items emerge from the initial absence of signal. Missault et al.

[29] discussed transfer learning strategies to train search models in

new domains where customer feedback is not yet available.

While such work is highly relevant for our current purpose,

we �nd that further e�orts are needed to continue, grow and im-

prove the results achieved in these experiences, better address the

involved tradeo� costs, produce more e�ective and generalizable

practical solutions, and develop a deeper understanding of the cold-

start problems. Beyond our speci�c focus of concern, many related

e�orts address parts of the challenges or similar ones in a di�erent

context. We discuss them next for comparison and motivation.

2.2 Cold start in recommendation

Under the connection between e-commerce search and recommen-

dation we drew in the previous section [48], it would be natural

to tap on the long strand of research and practice in dealing with

recommendation cold start. Cold start is indeed a classic topic in

recommender systems research, as it is the obvious Achilles’ heel

of collaborative �ltering, since cold start in this context means the

absence of input that such methods feed on [1]. Solutions gener-

ally consist in using side information to make up for the lack of

interaction data. Side information typically includes item-speci�c

features [25, 30, 37, 45, 51], and/or user-features [6, 12], and/or so-

cial information [39, 40]. In essence, and as a gross simpli�cation,

these approaches can be seen as �nding similarities between items

(or between users) and transferring the patterns learned by the

system on “warm” items onto new and cold items.

However, e-commerce search generally has heavier requirements

and customer expectations on topical relevance than recommen-
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dation has, and novelty-accuracy tradeo�s that recommendation

can bear are often not a�ordable in search: customers may put up

with the occasional irrelevant recommendation in exchange for

other valuable discoveries, but returning irrelevant search results

heavily erodes customer trust and reliance on the service as a whole.

New products that very few customers have interacted with incur a

high risk of presenting results that no one will purchase, and detract

from the immediate business value that other products of proven

interest would procure. A direct application of recommendation

cold-start methods “as are” to e-commerce search may therefore

not result in an appropriate balance when the customer is searching

with a speci�c need and purpose, under the tight requirements of a

sensitive online business.

2.3 Addressing bias in learning to rank
Learning to rank (LTR) is the application of machine learning for

solving ranking problems in information retrieval systems. Using

expert annotations as training labels, a scoring function for rank-

ing is learned that can generalize to predict relevance based on

query and document features [28]. Many popular LTR algorithms

such as LambdaRank/MART [7] and neural learning to rank [13]

have been proposed and adopted by industry, achieving substantial

improvements in retrieval e�ectiveness.

However, expert annotations are expensive and time-consuming

to obtain [9]. Furthermore, inmany applications, such as e-commerce

search ranking, user preferences are changing over time and are

often misaligned with experts’ opinion [24, 36]. On the other hand,

the implicit feedback from users when they are interacting with

the system is cheap to obtain and directly re�ects user preferences.

But they are also very noisy and biased [10]. Thus important re-

search e�orts have been invested into unbiased learning to rank

techniques in recent years, aiming to learn unbiased user prefer-

ences from biased user interactions. Two main families of methods

can be distinguished in this direction: counterfactual learning to

rank and online learning to rank.

2.3.1 Counterfactual learning to rank. In this perspective, a ranker

is learned o�ine using implicit feedback collected from a produc-

tion system (logging ranker). Methods in this family focus on both

capturing interaction biases and optimization methods that can

correct for them. Counterfactual LTR methods seek to extract the

in�uence of the logging policy out of the user actions, and obtain

an estimate of the true relevance of search results based on implicit

feedback. This is achieved by modeling customer behaviors (usu-

ally by probabilistic click models), where the model parameters are

estimated and determined by separate experiments[5]. After user

observation probability (known as propensity) is estimated, coun-

terfactual risk minimization is applied for model training [20], and

counterfactual evaluation is applied in computing o�ine metrics.

The loss functions and o�ine metrics are debiased from the logging

policy, and weighted by the current training policy, which is more

aligned with the online metrics that we care about.

Counterfactual LTR can optimize neural networks and DCG-like

methods through upper-bounding [2, 4]. In particular, Lambda-

MART can also be adapted to counterfactual LTR [17]. In proposed

approaches, inverse propensity weighting is a popular strategy that

is often used to mitigate position bias [2, 20]. Counterfactual LTR

can address trust bias [3] and item-selection bias [34, 46] as well.

However, counterfactual LTR can only deal with bias in observed

labels and only works when non-behavioral features are strong

enough to predict the target. For instance, a reasonable ranking

model can be produced by using just non-behavioral features train-

ing on debiased labels. But this approach cannot solve the new

challenge in behavioral features.

2.3.2 Online learning to rank. In this formulation, rankers are in-

teractively optimized under a stream of user interactions, rather

than from a set of labeled data. This is fundamentally di�erent

from currently dominant supervised learning to rank approaches

for information retrieval. Rather than explicitly modeling customer

behavior and estimating click models, online LTR methods perturb

the ranker parameters in random directions and select the most

promising candidates for update through interleaving or online

evaluation [16, 31, 38, 50].

Online LTR falls short however in addressing the new challenge

in behavioral features. Like counterfactual LTR, it only deals with

bias in labels, and relies on the assumption of a strong predictive

power of non-behavioral features. Also, it cannot update the ranker

very often in practice. Furthermore, online LTR �nds challenges of

its own in an e-commerce environment, such as the concept drift

involved in day-of-week e�ects (and seasonality in general [14]),

delayed customer feedback (users often close purchase decisions

days after searching), and other aspects making this a noisy en-

vironment, with which a su�ciently dynamic and robust online

learning solution is di�cult to accommodate.

3 FRAMEWORK
We now formalize the problem setup and describe the framework

for Learning and Memorizing to Rank (LMTR). Notations are sum-

marized in table 1. This setting is generally applicable to many

real-world search recommendation tasks, such as e-commerce prod-

uct search or video search and recommendation. We �nd LMTR

to be an important yet under-explored problem in the information

retrieval �eld.

3.1 Relevance and popularity
A user issues a query qt at time t to �nd a desired item. In response

to the query, the search system returns a set of items, the “match set”

Dqt , and displays it as a ranked list πt : d ∈ Dqt → {1, 2, ..., |Dqt |}

according to a scoring function ft : Dqt ×Q → R which we also

refer to as a ranking function (Q being the space of all queries).

Users then browse the delivered results list, producing explicit

feedback (clicks, add to cart, add to favorites, purchase, etc.) as they

engage with the system. For simplicity, we assume the feedback

consists of clicks and we represent this feedback as a binary vector

ct ∈ {0, 1} |Dqt | . Given this setting, the goal is to learn scoring

functions ft such that the expected cumulative reward over a period

of time T , E
[
∑T
t=0 |ct |1

]

=

∑T
t=0

∑

d ∈Dqt
E
[

cπt (d )
]

is maximized,

where | · |1 denotes the L
1 norm.

User feedback can be modeled as a random vector that depends

on the user’s browsing behavior when examining the list, and the

attractiveness of the items with respect to the query for the user.

This is generally referred to as a click model [10]. The click probabil-

ity can be expressed in terms of the examination probability and the

attractiveness probability. The former can be modeled as an a�ne

function of the position, accounting for both position and trust bias

[44]. Click data can be debiased upon an estimate of the parameters

in this a�ne function (e.g. based on historical A/B test data [5]).
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Table 1: Notation summary.

qt Query issued at time t

Dqt Match set of items under qt
ft Scoring function (ranker) at time t

πt The ranked list based on ft
ct A vector indicating whether a item in Dqt got clicks

A Attractiveness of an item under a query

x
nb Non-behavioral feature vector of a query item pair

x
b
t Behavioral feature vector of a query item pair at time t

ρ Prediction (generalization) power of Xnb on A

D Customer interaction data (behavioral information)

ϕ Function that calculates behavioral features xbt from D

The attractiveness component, on the other hand, is commonly

handled in existing debiasing approaches as a simpli�ed issue of uni-

dimensional relevance. We contend that more e�ective approaches

can be developed by considering two driving elements that deter-

mine attractiveness: a) the topical or semantic relevance between

queries and items, and b) the popularity of the items among the

users issuing the queries.

It is natural to assume that topical relevance can be well captured

by content-based item features such as the product title and descrip-

tion, and the query keywords entered by customers. However, the

popularity of items for queries can hardly be captured by content-

based features only [15]. Based on our experience in e-commerce

search, even large tree ensembles or sophisticated deep-learned

embeddings underperform in predicting popularity from content in-

formation. This is not surprising: shoppers select search results not

just based on howwell they match the query, but also based on their

beliefs and expectations of product quality, built upon past experi-

ence, other customers’ reviews, and an assessment of how the prod-

uct may please and �t the user’s needs. This type of information is

not easy to capture in query words and product descriptions alone.

3.2 Behavioral and non-behavioral features
Given a query q and an item d , we denote non-behavioral fea-

tures as xnb = x
nb (q,d) and behavioral features as xb = x

b (q,d).

Behavioral features can potentially depend on users, but we do

not consider personalization here for simplicity. Behavioral fea-

tures capture historical engagement (to simplify, click) statistics on

query-item pairs, or pooled statistics of historical clicks on groups

of query-item pairs.

Behavioral and non-behavioral features are both needed tomodel

item attractiveness successfully, while they are fundamentally dif-

ferent. Non-behavioral features re�ect intrinsic properties in the

relationship between queries and items. They carry higher certainty

than behavioral data and are well-de�ned for all queries and items.1

In this sense, they are the “typical” features in a supervised ma-

chine learning problem where the task is to generalize. Behavioral

features, on the other hand, are not de�ned (missing not at random)

for items the system did not show. In contrast to non-behavioral

features, they involve higher uncertainty and they are dynamic,

as they are constantly changing with customer-system interac-

1By “certainty” in this context, we mean certainty in the system knowledge about the
property the feature represents. For instance, the technical description of a new TV
set is a known piece of information, whereas how successful the TV will be among
consumers is an unknown variable that we can only speculate about, and estimate
with increasing certainty as purchase data starts to become available.

tions. If all items were exposed su�ciently often to customers in

response to a query, an optimal ranking could be produced based

solely on a click rate estimated from behavioral features. How-

ever, this approach is not able to properly rank for new queries

or new items with empty behavioral features. Behavioral features

can therefore be seen as involving a memorization mechanism.

Despite this important di�erence, behavioral and non-behavioral

features are commonly used in the same way in a traditional formu-

lation of the ranking task as a supervised machine learning problem.

We envision a better approach where we train an additional model

based on non-behavioral features to impute or predict the behav-

ioral feature values. The challenge here is how to predict behavioral

features accurately with a non-behavioral feature model, given the

lack of generalization power of the latter regarding item popularity,

as we are precisely arguing here. We refer to this problem as “Learn-

ing and Memorizing to Rank” (LMTR), described in Section 3.4.

3.3 Related formulations
Aside from LTR frameworks that consider non-behavioral features

and relevance only, some frameworks and algorithms address the

combination of both types of information (the generalization and

memorization issue) in a similar direction as we discussed above.

We brie�y summarize such work here and point out the di�erences

to our proposed perspective.

In this area, LTR has been formulated as a multi-armed bandit

problem under di�erent click models, such as cascading bandit [22],

DCM bandit [21] and position-based model bandit [23]. In such

work, the goal is to �nd the optimal ranking that minimizes the

cumulative regret (where click is the reward) for a single query. This

formulation takes thus a pure memorization angle. A natural step

forward is to model the LTR problem as a contextual bandit [26, 27],

where the mean reward is modeled as a function of the context

features, rather than a purememorization of the reward distribution,

in the hope to bring more e�ciency in the bandit algorithms.

One di�erence between the usual contextual bandit framework

and our perspective is that we model the mean reward (attractive-

ness of items given queries) as depending both on behavioral and

non-behavioral features, whereas reward is modeled using only

non-behavioral features in the contextual bandit. The source of un-

certainty is therefore fundamentally di�erent in the two problems:

the non-behavioral feature model parameter uncertainty in the con-

textual bandit vs. the behavioral data uncertainty in LMTR. Since

the key to the design of a bandit algorithm is reward uncertainty

quanti�cation to balance the exploration and exploitation, the nice

empirical and theoretical results in existing contextual bandit LTR

frameworks do not hold in LMTR.

Another closely related problem considered in the LTR literature

is the combination of generalization and specialization. Jagerman et

al. [18] and Oosterhuis and De Rijke [33] propose to train a general

ranking policy that, in our terminology, is based on non-behavioral

features only, along with di�erent behavioral-only policies special-

ized for each query. A high con�dence bound is then computed

on the performance di�erence, based on a large amount of interac-

tion data, and the specialized policy for a query is only deployed

when it outperforms the general policy with su�cient con�dence.

Similar to what we discussed above, this clearly di�erentiates the

role of the non-behavioral and behavioral features. However, be-

havioral features are used in this setting as a way to “�ne tune”



Addressing Cold Start in Product Search via Empirical Bayes CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

the general policies. In our LMTR perspective, we almost always

need behavioral features, even in the general policy. Due to the lack

of generalization power of non-behavioral features in predicting

item popularity, we need a more fundamental and e�cient use of

behavioral features than just �ne tuning.

3.4 Learning and memorizing to rank

We now formally de�ne the LMTR setting. At time t , the user issues

a query qt , the system presents the match set Dqt with ranking πt
powered by a ranker ft = ft (q,d) and receives the reward as clicks

ct . For a randomly selected query-item pair (q,d) at position k with

non-behavioral feature Xnb , we model a click random variable

C as a consequence of examination E and item attractiveness A.

Following the notation in [44] that considers both position bias and

trust bias, we have this a�ne relationship between click probability

and the probability that the item is attractive given the query:

P(C = 1|d,k,q) = αk P(A = 1|d,q) + βk

where αk = P(E = 1|k)(P(C = 1|k,A = 1,E = 1) − P(C = 1|k,A =

0,E = 1)) and βk = P(E = 1|k)P(C = 1|k,A = 0,E = 1).

The estimation of the bias parameters αk , βk and the way of de-

biasing during model training are well studied [4, 5] and are not the

focus of this paper. We consider the situation when the attractive-

nessA cannot be well captured by the non-behavioral features Xnb

only, as discussed earlier. Formally, the best theoretical prediction

of A based on Xnb is the conditional expectation E[A|Xnb ] and we

have the variance decomposition:

Var(A) = Var(E[A|Xnb ]) + E[Var(A|Xnb )].

We de�ne the prediction (generalization) power as:

ρ = Var(E[A|Xnb ])/Var(A) (1)

which is a value between 0 and 1: whenA andXnb are independent

we get ρ = 0 since E[A|Xnb ] = E[A] is a constant with 0 variance.

When A fully depends on Xnb , that is, there is a function f such

that A = f (Xnb ), hence E[A|Xnb ] = A, and the ratio becomes

ρ = 1. In general, we consider the system when ρ is small.

Since the prediction power of non-behavioral features is quite

limited in our setting, we require the ranker to use both behavioral

features xbt (q,d) and non-behavioral features x
nb (q,d). The former

are calculated from historical data D = {(qi ,Dqi ,ci )}
n
i=1 and are

updated as new data comes: xbt+1 = ϕ(xbt ,qt+1,Dqt+1 ,ct+1).

In practice, the ranker can be expected to require less frequent

updates than features do. We can express the ranker parameters as

θ t = (θbt ,θ
nb
t ) which will also be learned from historical data and

potentially be updated by new interaction data. The parameters

in the ranker indicate the relative importance of features for opti-

mizing the reward, and can be expected to be quite stable, unless

there is a salient distribution change in the queries users issue or

the available items in the system.

Hence for simplicity, we �x the ranker parameters and assume

the ranking updates only come from behavioral feature updates:

ft (q,d) = f (xbt (q,d),x
nb (q,d);θ ). Given the historical data D, the

goal is to learn the ranker parameters θ and design behavioral fea-

tures xbt such that ranking by ft = f (xbt ,x
nb ;θ ) maximizes the ex-

pected cumulative reward in a period of timeT :
∑T
t=0

∑
d ∈Dqt

Ecπt (d ).

Essentially, the learning component comes from estimating the

ranker parameters θ from data, while the memorizing component

depends on the behavioral signals captured in x
b .

Later in section 5 we simulate a simple LMTR system and demon-

strate that a ranker without feature exploration su�ers from a severe

cold-start e�ect when the prediction power ρ is low.

4 OVERCOMING COLD START THROUGH

EMPIRICAL BAYES

We now present our approach to address cold start in e-commerce

search based on the framework of LTMR described in Section 3. In a

LMTR system, the ranking heavily relies on behavioral features that

are often missing or involve high uncertainty for new query-item

pairs. Such items get ranked lower than they should and it is hard

for users to discover new high-value choices that might greatly

match their needs. A typical discovery journey of a new item is

�rst through spear�shing queries where the match set is of a much

smaller size than average. The new item then gets a chance to be

found by and exposed to users, and behavioral features can get an

initial critical mass, just enough to trigger discoverability.

Once the behavioral features of the new items reach stability,

they start to emerge also in more general queries. Therefore, it

takes a very long time for new items to be stably ranked at their

due position. The system needs an e�cient and reliable mechanism

to actively explore new products to accumulate behavioral informa-

tion faster, in order to: i) help customers to easily discover relevant

new products; and ii) help sellers to present their new selections in

front of consumers.

Since the cold start problem in LMTR is mainly due to the uncer-

tainty of behavioral features, which are the main factors of short-

term ranking changes, it is natural to design the exploration mech-

anism through behavior prediction and update at query time when

new interaction data comes in. We refer to this as online feature

exploration. Two challenges for online feature exploration are:

(1) The prior models for behavioral features need to be e�cient

due to tight latency requirement.

(2) Once the explored items get customer feedback, the feature

values need to be properly updated to re�ect their preference.

4.1 Modeling engagement and update via

Empirical Bayes

Conceptually, the Empirical Bayes (EB) approach [8] is well suited

to the challenge: we can learn a simple model that determines an

informative prior of behavioral features for each cold-start query-

item pair based on their non-behavioral features to break the cold

start, and then use Bayes’ formula to update the feature value once

we observe new feedback. This mechanism can shift promoted cold

items towards the level of exposure they actually warrant.

In more detail, let us assume the behavioral feature is just the

estimated click rate for a query-item pair: p̂ =m/n where n is the

number of times an item d has been impressed in response to a

query q, andm is the number of times users clicked on the item in

the impressed results. If a new product has never been returned

for a query, or has only been showed few times, feature p̂ is un-

de�ned or highly unreliable. To overcome this cold-start problem,

we assume the number of clicksm is drawn from a Binomial distri-

butionm |n,p ∼ Bin(n,p), where the prior distribution of the true
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click rate p follows a Beta distribution p ∼ B(α , β). We make this

an informative prior by assuming the parameters α , β depend on

the non-behavioral query-item feature vector xnb (d,q) through a

parameterized function α = д1(x
nb
,θ1) and β = д2(x

nb
,θ2).

The parameters θ1,θ2 can be learned through maximum likeli-

hood estimation: assuming we observe N query item pairs with the

triplet (xnbi ,ni ,mi ), i = 1, 2, ...,N , the parameters are determined

by maximizing the log-likelihood function of the observations:

L(θ1,θ2) =
∑

i

(logB(αi +mi ,ni + βi −mi ) − logB(αi , βi ))

where αi = д1(x
nb
i ,θ1), βi = д2(x

nb
i ,θ2), and B is the Beta function.

In the experiments we report later, we test both linear and tree

models for д1 and д2. For linear models, the parameters can be

solved by gradient descent. The tree models are learned in a usual

greedy approach for regression trees, but adding a linear model on

each leave, where the parameters are learned by gradient descent.

Once we have the informative priors, following Bayes’ rule and

the property of conjugate priors, we know that the posterior distri-

bution of the click rate after observing the behavioral data (n,m)

is still a Beta distribution: p |m,n ∼ B(α +m, β + n −m). Then, to

update the behavioral feature p after initialization with the learned

prior model, we can simply update the behavioral feature to the

posterior mean p̂eb = (α +m)/(α + β + n).

4.2 Online feature exploration

EB-based feature exploration can be performed in two settings:

o�ine and online. In the o�ine exploration approach, the feature

value is updated based on logged customer feedback data, and pub-

lished into the search engine through a common indexing pipeline.

Since the calculations are done o�ine, we can a�ord much more

complex priormodels and update rules. However, because new prod-

ucts lack su�cient behavioral data, generating related queries for

new products based on non-behavioral information is notoriously

hard [14]. Moreover, the feature update latency is considerably long

in the o�ine pipeline. In contrast, generating related queries for

new products is not a problem in online exploration: we can explore

all quali�ed new products recalled by the search engine at query

time. Also importantly, online exploration avoids the long involved

latency in a full o�ine loop. Consequently, we implement online

feature exploration in our experiments.

In the online feature exploration framework (Figure 1), we use

prior models to predict behavioral features of new products as

an initial value. The prior models are hosted in the search engine

and invoked at query time. We also build a fast customer feedback

pipeline to continuously update customer feedback data, and pub-

lish it into the search engine as the input data for the behavioral

feature update rules (based on Empirical Bayes as we describe in

the next section). As we discuss later in our reported experiments in

Sections 6 and 7, the update speed of the customer feedback pipeline

is critical to the practical e�ectiveness of product exploration.

5 EXPERIMENTS ON A SIMULATED SYSTEM

We now empirically study the e�ect of feature exploration based on

Empirical Bayes for mitigating cold-start. We �rst test our approach

in a simulated LMTR system; later in Sections 6 and 7.4 we report

experiments in a real, large-scale e-commerce website. In all exper-

iments, we track the reward (clicks for the simulation, purchases

Figure 1: Online feature explorationwith fast customer feed-

back pipeline.

for the real system) from all items and cold items over a period of

time. We then compare the performance of the ranking with and

without feature exploration, taking the former as a baseline.

Simulation-based experiments are common in the learning to

rank and bias mitigation literature [2, 20, 32]. Typically, real data

involving queries, documents, content features and relevance labels

from expert annotation are taken from public datasets, and user

clicks are simulated upon the real data based on a con�gured click

model. In such settings, ranking models trained on click data can

be compared to an oracle model trained on the expert annotation.

Our experiments are based on full simulation of content fea-

tures and the true labels, rather than semi-simulated experiments

upon expert annotations, for the following reasons. Simulations

in prior work are based on public learning to rank datasets col-

lected in the context of web search, which is quite di�erent from e-

commerce [9, 11, 35]. Expert annotation assumes a fair level of objec-

tivity in topical relevance, which can go a long way in domains such

as general web search. In e-commerce, themotivation for a customer

to purchase a search result certainly involves a topical relevance

requirement. But the simplifying assumption that any topically rele-

vant product is as good as any other does not work when the choice

among relevant results is the core of the problem. Key subjective

factors beyond topicality are involved in making a product attrac-

tive given a query, such as price, convenience, fancy, and other

intangible motivations, that cannot be captured by external judges.

As discussed in previous sections, content-based features have

limited ability to predict attractiveness. With full simulation, where

the true labels and non-behavioral features are also generated by us,

it is easier to simulate di�erent levels of prediction power of non-

behavioral features. The purpose of this simulation is not to mimic

the real distribution of customer feedback and features. Rather, we

aim to show here that cold start becomes more severe when the

prediction power of non-behavioral features is lower, and how the

feature exploration can help to mitigate this. We describe the details

of our LMTR system simulation in the subsections that follow.

5.1 Non-behavioral features

We generate 10,000 items and 1,000 queries described by feature vec-

tors x Ii and x
Q
j respectively. Then for each query qj , we randomly

select a subset of items Dqj as the match set, ranging from 5 to 50

items, with average size to be 25. A small match set indicates that
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the corresponding query is a spear�shing query. This way we get

around 25,000 valid query-item pairs. We also generate a feature

vector x
IQ
ji , j = 1, ..., 1,000, i = 1, ..., |Dqj | for each pair. To simplify

the simulation, we make all the feature vectors take size 1, and we

assign their value uniformly at random in [0, 1]. The non-behavioral

features we get are thus a length-3 vector xnbji = (x Ii ,x
Q
j ,x

IQ
ji ).

5.2 Product attractiveness

We model the mean attractiveness of a pair as pji = w f (xnbji ) +

(1 −w) eji , where f is a linear function with unit length coe�cient

vector, and eji is a latent random variable indicating the popularity

of product di for query qj , independent from the feature xnbji and

uniform in [0, 1]. The weight w ∈ (0, 1) controls the prediction

power of non-behavioral features for attractiveness. Given the fea-

ture, we simulate the attractiveness of a query-item pair by a binary

random variable: Aji |x
nb
ji ∼ Bern(pji ). The prediction power of

non-behavioral features de�ned earlier in Equation 1 then becomes:

ρ =
Var[E(A|Xnb )]

Var[A]
=

w2/12

1/4
=

w2

3

where the �nal result follows from the de�nitions of A, p, f , and

the mean and variance of Bernoulli and uniform distributions.

5.3 Interaction data and ranker training

We also simulate the interaction data collection, which we represent

as a set of tuples (qj,di ,nji ,mji ), where nji is the number of impres-

sions (number of times shown to users) of item di in response to

query qj , andmji ≤ nji is the number of clicks produced on these

impressions. We generate nji uniformly at random between 10 and

1,000 for all pairs, and the number of clicks from a Binomial distri-

butionmji |nji ∼ Bin(pji ,nji ), based on the mean attractiveness pji
de�ned earlier. Note that since click debiasing is not the focus of this

experiment, we assume the behavioral data we collect are free of

position bias for simplicity. Finally, we randomly sample 1,000 items

to simulate a cold-start item set, by removing all the behavioral data

of the impression and click pairs involving those items. This set will

be used as training data to train rankers. We also generate an inde-

pendent copy of the data collection (the cold-start item set is the

same) for the calculation of the behavioral feature (click rate p̂).

We train two ranker types on the simulated interaction history:

• Non-behavioral ranker: the scoring function f nb is trained by

logistic regression taking only non-behavioral features xnb as

input to estimate the probability whether there will be a click.

• Behavioral ranker: similarly consists of a logistic regression

scoring function f b , but in addition to non-behavioral features,

the function takes the estimated click rate p̂ as input feature

which is computed from historical interaction data.

The interaction data that the rankers are trained upon is indepen-

dent from the historical interaction data for behavioral feature

calculation, but they are generated through the same process.

5.4 Feedback loop simulation

Finally, we are ready to simulate the online interaction between

users and the LMTR system. At each time t , we randomly sample a

query qt and obtain the match set Dqt . We use the scoring function

f to rank the items in decreasing order, and we simulate clicks on

the top 10 items by the probability of attractiveness. This top-k

Figure 2: Posterior mean and variance estimate from infor-

mative vs. non-informative priors.

selection bias, together with the uncertainty of behavioral features,

form the cold-start challenges in LMTR.

We consider three combinations of ranker and feature updating

strategy: 1) only using a non-behavioral ranker f nb = f nb (xnb )

without any feature updates; 2) using a behavioral ranker f bt =

f bt (x
nb
, p̂t ) and updating the behavioral feature (the estimated click

ratio p̂t ) after each turn; 3) the same as 2, but the behavioral feature

calculations and updates for the cold-start item set is carried out

by Empirical Bayes p̂eb as described in section 4.1.

First we calculate the informative prior Beta distribution where

the parameters α , β depend on the non-behavioral features through

a linear model. For comparison, we also compute the universal prior

parameters which are independent of non-behavioral features. Both

are calculated through maximum likelihood estimation.

5.5 Results

First, we examine the e�ciency gain by using an informative prior

instead of a universal prior. We see in Figure 2 that, as user feed-

back grows, the posterior estimation from the informative prior

(the lower graph) and the universal prior (the upper graph) both

converge to the true click rate. But the informative prior needs

much fewer impressions to reach a stable and accurate click rate

estimate since its initial guess is much closer to the true click rate.

Next, we analyze the cumulative reward over cold items and

all items for the three ranking and updating methods: i) the non-

behavioral ranker ii) the behavioral ranker and iii) the behavioral

ranker with EB feature exploration (simply refer as EB). In Figure

3, the cumulative reward for the cold-start items and all items

is plotted with dashed and solid line respectively. We also have
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Figure 3: Reward over time for cold-start items and all items

under three rankers.

two situations here: i) when the generalization power of the non-

behavioral feature is strong (the upper graph) and ii) when the

generalization power of the non-behavioral feature is weak (the

lower graph). We can see in the �gure that:

(1) When the prediction power is strong, the non-behavioral ranker

is not bad in terms of accumulated reward, while the behavioral

ranker is much better when the prediction power is low.

(2) When the prediction power is low, the cold-start problem is

more severe: the average reward of the cold-start items is sig-

ni�cantly lower.

(3) In terms of the cumulative reward from cold items, the behav-

ioral ranker with feature exploration (EB) is much better than

the non-behavioral ranker and the behavioral ranker without

feature exploration. This supports our hypothesis that the main

cause of the cold-start issue in a LMTR system is the lack of

prediction power of non-behavioral features and the bias in-

troduced by behavioral features. Feature exploration via EB

shows promise here in mitigating the problem.

6 ONLINE A/B TEST

We now test our approach on real search tra�c. In order to ver-

ify our hypothesis that online feature exploration can e�ectively

mitigate cold-start, we �rst run a proof-of-concept experiment (EB

v1) for our EB-based feature exploration, through an A/B test on 8

million queries during a week. In this experiment, we predict the

prior value of the behavioral feature as discussed in the previous

section, using a linear model, and we adjust the posterior using

Empirical Bayes based on customer feedback.

It can be noted in the results reported in Table 2 (�rst row:

EB v1) that our method signi�cantly increases the impressions

Table 2: Online results of A/B test comparing Empirical

Bayes with control search system. The statistical signi�-

cance is denoted by ∗ (p-value < 0.05).

New products All products

Impression Click Purchase Purchase

EB v1 +97.42%∗ +57.99%∗ +38.84%∗ -0.5%∗

EB v2 +13.53%∗ +11.38%∗ +11.14%∗ +0.08%

of new products (up by 97.42%) compared to the baseline. The

improvement in clicks and purchases highlights the e�ectiveness

of our method in overcoming cold start. This shows that our EB

approach is quite e�ective in enhancing the exploratory behavior

of our search system, giving fair opportunity to new products to

be chosen by customers. This comes however at the expense of a

statistically signi�cant decrease in the overall purchase (including

new and established products). Several factors may contribute to

this outcome, in particular:

(1) Old products have a higher purchase rate than new products: in

general, old products sell more due to the availability of rich

metadata, customer reviews and other feedback. Therefore,

showing new products and replacing old well-selling products

may result in an overall lower short-term purchase rate.

(2) Bayesian updates were not fast enough: Bayesian updates with

customer behavior are an opportunity to adjust the prior value

and obtain a more informative posterior. In our experiments,

we updated the posterior at a 24 hours interval. This means that

suboptimal prior predictions remain exposed to customers for

longer than they should, deteriorating the shopping experience

and resulting in a lower purchase rate.

7 APPROACH REFINEMENTS

Based on the results and analysis of our �rst A/B test, we improve

several components. Speci�cally, we improve the prior model, the

update speed, and we introduce an early stopping strategy.

7.1 Improved prior model

Instead of a single linear model as in the previous experiment,

we now train a tree-structured model with 8 leaves, where each

leaf contains a linear model. The split features in the tree are pre-

selected query-level features, such as query frequency; the split

points and the coe�cients of the linear models in the leaves are

jointly trained by MLE as described in section 4.1.

We also incorporate behavioral features aggregated at product

level in the model, instead of non-behavioral features only. The

rationale for doing so is that these features should not introduce

much bias against cold-start products as the training data only

consists of cold-start query-product pairs, and the product-level

behavioral features have good enough coverage among them (>90%

non-zero values); while the query-product behavioral features have

less than 10% non-zero values.

Product-level behavioral features are also quite powerful for

identifying potentially popular cold products as they aggregate

the customer behavior through spear�shing queries, and customer

experiences outside of search. This makes product-level behavioral

features a highly valuable source of prediction power even for cold

items. Those changes resulted in about a 10% o�ine AUC increase.
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7.2 Faster Bayesian update

The Bayesian update loop is the key component of the system. In

this component, the update speed determines whether behavioral

features can quickly converge to the right score: the faster the

update, the better the system will perform. Keeping up with the

massive volume of customer feedback data in an industrial search

engine is a major challenge in this endeavor. We observed nonethe-

less that the volume of incremental data per hour is manageable,

and this inspired us to split the stored feedback data into a “daily”

set and an “hourly” set. The daily-updated data set spans the full

lifecycle of products, whereas the hourly data set only stores data

from engagement in the current day. Based on these two sets, we

develop daily and hourly feedback pipelines. The daily pipeline

is slow since it accumulates actions of all products. The hourly

pipeline is fast and is published into the search engine through a

real-time indexing system, that signi�cantly improves the Bayesian

update frequency from once every 24 hours to once every 2 hours.

7.3 Early stopping

Even with faster update, exploration incurs in considerable engage-

ment loss when the prior model wrongly assigns a high behavioral

feature value to a low-quality cold query-product pair. The ranking

position of the explored item is boosted high for the query, yet

the action rates (e.g. click, add-to-cart, purchase) of the item are

much lower compared to other items in a similar position. Bayesian

updates from the customer feedback will gradually correct the be-

havioral features, eventually ranking the item at a lower position

that better corresponds to its inferior performance. However, this

can take days if the prior model is too con�dent about the query-

product pair, and the incurred loss can be substantial.

We directly mitigate this cost by implementing a UCB-based

early stopping rule upon customer feedback. The rule is simple:

we stop exploration for a query-product pair if the upper con�-

dence bound of the dynamic user action rate is lower than a certain

threshold τ . More speci�cally, based on a normal approximation

of a Binomial distribution form observed user actions over n > 0

impressions of an item, we stop exploration when:

m

n

+ za

√

τ (1 − τ )

n

< τ .

where za is the 1 − a upper quantile of a standard normal distribu-

tion, a ∈ [0, 1] being the con�dence level of UCB. We set a = 0.1

in our implementation, thus getting za = 1.6 and a 90% upper con-

�dence bound. In our experiments, we consider click, add-to-cart

and purchase as actions and de�ne the threshold τ as the average

action rate of all non-cold-start pairs.

7.4 Second A/B test

We incorporated those improvements and run a second experiment

(EB v2) through an A/B test on around 50 million queries, conducted

during four weeks. The results are presented in Table 2 (second

row: EB v2). The exploration is of much better e�ciency than it

was in the previous version. Speci�cally, we see that the increase in

impression (13.53%), click (11.38%) and purchase (11.14%) is much

better balanced – unlike the previous version, where engagement

is much lower within the explored items. We even managed to in-

crease the overall purchase by 0.08%. In addition to the above online

metrics, we measured a small but statistically signi�cant increase of

0.016% in nDCG@16. To compute nDCG, we pooled relevance judg-

ments on a sample of 100,000 queries, for which the top 16 results

were judged by majority vote among three human judges per query.

8 CONCLUSIONS

We �nd that cold start is still to much extent an unsolved problem

in large-scale e-commerce services and highly competitive online

markets. Cold start has been extensively addressed in recommender

systems research, but we struggle to �nd comparable references

in search-oriented retrieval, and e-commerce in particular where,

as in recommender systems, user engagement is a fundamental

signal to optimize user satisfaction. Cold start can be characterized

as a case of selection bias, linking to extensive recent e�orts on

bias mitigation in learning to rank. Fully missing data is however a

drastic case of bias for which available solutions tend to fall short.

As a direction to frame and address the problem, we cast search

cold start as a Learning and Memorizing to Rank problem, where

the key characteristic is that both non-behavioral and behavioral

features are used as input for generating rankings. While real-world

ranking systems are routinely using behavioral features [15, 41],

work in the learning to rank literature addressing this perspective

in search systems seems scant. Behavioral features are crucial in a

LMTR system, but treating them naively as regular content-based

features in a supervised learning strategy may result in a severe

bias against items that lack su�cient feedback – we believe this

e�ect may be even stronger than the bias in training labels. We

thus envision the smart combination of the generalization power of

non-behavioral features and the memorization power of behavioral

features as the key to enable e�ective rankings in a LMTR system.

We provide a principled and scalable solution through behavioral

feature exploration based on Empirical Bayes, where the problem

is decomposed into an e�ective prediction of prior engagement

probability, followed by suitable feature update, and exploration

stopping mechanisms once engagement catches on. Our experi-

ments with both a simulated and a real ranking system show highly

positive results. Even if a moderate initial tradeo� in short-term

engagement might be acceptable, we achieve cold-start remedia-

tion within bounds of una�ected business metrics. We also �nd

that speci�c technical enhancements and adjustments, such as the

accuracy of modular predictors and exploration update speed, are

key to make the most of our proposed approach.

Beyond our reported e�orts, the problem remains open andmany

directions unfold for continued research. Further ambitions would

aim, for instance, to monitor a longer-term scale, beyond the short

span of an A/B test. This might uncover further room for leveraging

opportunity from new products, and justify more aggressive short-

term tradeo�s to move beyond local minima. In this perspective,

quantifying long-term improvements, and attributing them to spe-

ci�c treatments is a well-known challenge [15]. We also envision

the formal de�nition of a LMTR bandit system as a direction worthy

being explored, based on e.g. lower-bound regret analysis and the

construction of algorithms that match the bounds. Closely related

to the cold-start problem, fairness and diversity in LMTR are also

important angles that should be addressed. A di�cult challenge in

such directions is properly measuring the improvements, de�ning

the appropriate metrics that capture the intended e�ects, or even

de�ning what those e�ects should be at the conceptual level.
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