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ABSTRACT

Product search for online shopping should be season-aware, i.e.,

presenting seasonally relevant products to customers. In this pa-

per, we propose a simple yet e�ective solution to improve sea-

sonal relevance in product search by incorporating seasonality

into language models for semantic matching. We �rst identify sea-

sonal queries and products by analyzing implicit seasonal contexts

through time-series analysis over the past year. Then we introduce

explicit seasonal contexts by enhancing the query representation

with a season token according to when the query is issued. A new

season-enhanced BERT model (SE-BERT) is also proposed to learn

the semantic similarity between the resulting seasonal queries and

products. SE-BERT utilizes Multi-modal Adaption Gate (MAG) to

augment the season-enhanced semantic embedding with other con-

textual information such as product price and review counts for

robust relevance prediction. To better align with the ranking ob-

jective, a listwise loss function (neural NDCG) is used to regular-

ize learning. Experimental results validate the e�ectiveness of the

proposed method, which outperforms existing solutions for query-

product relevance prediction in terms of NDCG and Price Weighted

Purchases (PWP).
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1 INTRODUCTION

Seasonality is an important dimension for relevance matching in

online shopping product search. Given the same query, a user’s

intent may vary depending on the season when the query is is-

sued. Consequently, the change of user intent would directly a�ect

query-product relevance matching for product search. As shown in
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Figure 1, the query “jacket for men" has two di�erent sets of rele-

vant products in winter and in summer: it leads to more sales of the

product “Wind Cheater Jacket" in summer/fall season, while more

sales of the product “Bomber Jacket" in winter. Such queries are

called seasonal queries. According to [16], 39% queries are highly

seasonally relevant to the time of search and would bene�t from

handling seasonality in ranking.

Figure 1: Monthly Sales of two types of jackets resulting from

the query “jackets for men". In this example, “jackets for men” is

an implicit seasonal query, as customers have di�erent purchase

preferences during di�erent seasons, even though the query does not

explicitly convey the seasonal intent such as “winter" or “summer".

The y-axis has been re-scaled to omit absolute numbers.

It is worth noting that the majority of seasonal queries are implic-

itly seasonal, which do not contain explicit seasonal keywords. For

example, “jackets formen" in the previous example is an implicit sea-

sonal query. On the contrary, “winter jacket" is an explicit seasonal

query, whose seasonal intent is explicitly conveyed by including

“winter" in the query keywords. Implicitly seasonal queries pose

great challenges for product search. First, unlike explicit seasonal

queries, because of the absence of seasonal keywords in implicit

queries, it is di�cult to infer seasonal relevance between the implicit

queries and products purely based on lexical or semantic matching

between query keywords and product titles. Second, existing works

on detecting seasonal queries [8, 14] mainly rely on analyzing the

temporal dynamics of query frequency, which may fall short when

it comes to implicit seasonal queries.

To explicitly address the seasonality problem, Yang et al.[16]

propose to model the seasonality of a product as the probability

of being purchased in each of the twelve months estimated by the

proportion of a product’s annual sales concentrated in each month

(called MSC score) based on historical sales. A neural model is
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trained, which takes the product title as input, to predict the MSC

score for products without historical sales data. However, the MSC

score is a product-level score that fails to capture the purchase

intent conveyed by query keywords. Incorporating temporal infor-

mation into search ranking has been studied in [3, 7, 16]. Dakka

et al. [3] automatically identify important time intervals for time-

sensitive queries over a news archive, and use these intervals to

adjust the document relevance scores by boosting the scores of

documents published within the important intervals. Kanhabua

and Nørvåg [7] employ both entity-based and temporal features

derived from annotation data to learn a learning to rank model.

The entity-based features aim to capture the semantic similarity

between a query and a document, whereas the temporal features

measure the temporal similarity. Recently, language models such

as BERT have become popular for semantic matching in product

search [1, 4, 6, 12, 13]. To study the temporal e�ects in language

models, Dhingra et al [4] propose to jointly modeling text with its

timestamp to improve memorization of seen facts and calibration

on predictions about unseen facts from future time periods. Agar-

wal and Nenkova [1] systematically study the temporal e�ects on

downstream language tasks, including temporal model deteriora-

tion and the bene�t from retraining models on more recent data

to improve model performance. Rosin, Guy and Radinsky [12] pro-

pose TempoBERT, which uses time as an additional context of texts

and perform time masking in pertraining to facilitate the acquisi-

tion of temporal knowledge. Later, Rosin and Radinsky [13] extend

multi-head attention to include an additional temporal attention.

Motivated by the above, we explore the use of language models

for semantic relevance prediction, enhanced by the additional time

context. However, our investigation focuses on the seasonality, and

how it can be utilized to better measure the relevance between a

seasonal query and products. We start by de�ning seasonality at

the query level and obtain corresponding seasonal products. Then

we propose to explicitly introduce the seasonal context by directly

concatenating the time token at the beginning of query texts. Built

upon popular BERT-based language models, we propose a season-

enhanced BERT model (SE-BERT) to learn the semantic similarity

between the query texts and product texts (product title, material,

etc.). The semantic embedding is augmented by other contextual

information such as product price and review counts for robust rele-

vance prediction through a Multi-modal Adaption Gate (MAG) [11].

We study the e�ects of di�erent loss functions on the learning out-

come and demonstrate the e�ectiveness of the proposed model in

predicting query-product relevance by incorporating seasonality.

Comprehensive experiments reveal the importance of incorporat-

ing the seasonal signals into semantic matching and highlight the

necessity of season-aware language models for product search.

2 PROBLEM FORMULATION AND MODELING

Let Q be the set of all possible queries and A be the set of all

products. For a given query @ ∈ Q, let �@ = {08 }
=@
8=1 ⊂ A be the

subset of =@ matched products. Let a query-product pair (@, 08 )

be represented by a ?-dimensional feature vector x
@
8 ∈ R? . Our

goal is to learn a scoring function 5\ : R? → R that can assign

a score B
@
8 (C) to each (@, 08 ) pair from its corresponding vector

representation, conditioning on a speci�c season C , i.e., (x
@
8 |C) ↦→
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Figure 2: The overview of SE-BERT.

B
@
8 (C). Speci�cally, C is taken as an input to 5\ . The items can then

be ranked in descending order of scores.

2.1 Learning seasonal semantic relevance

To address the challenge of capturing the seasonal semantic rele-

vance between the text of query and products, we propose Season-

enhanced BERT (SE-BERT) model. As shown in Figure 2, SE-BERT

involves a pretrained BERT as a language model to capture the

season-related semantic relevance between the semantic context

of a query and a product. As behavior signals are important for

product search and re�ect the short-term and long-term relevance

between a query and products, we incorporate behavior informa-

tion such as product price and review counts as additional contexts

to improve relevance prediction through a Multi-modal Adaption

Gate (MAG) [11]. Compared with other feature fusing approaches

such as concatenation, MAG highlights the relevant information

from non-text data conditioned on the current embedding vector.

The architecture of our proposed SE-BERT is shown in Fig. 2.

Seasonal query identi�cation. Constructing the seasonal query

set is one of the keys to learn seasonal semantic relevance. Given a

query @, the bestselling product set in month< is de�ned as �
@
< ,

where 1 ≤ < ≤ 12. If @ is a seasonal query, customers tend to pur-

chase di�erent sets of products depending on the season/occassion,

resulting in a varying �
@
< as< changes. Therefore, to capture such

implicit seasonal contexts, we use the Jaccard Index to discrimi-

nate season queries. For query @, the Jaccard Index matrix �
@
<1,<2

between �
@
<1

and �
@
<2

, where 1 ≤ <1,<2 ≤ 12 and<1 ≠ <2, is

de�ned as

�
@
<1,<2

= |�<1
∩�<2

|/|�<1
∪�<2

|. (1)

The mean Jaccard index of query @ over 12 months is

�@ =
1

12 × 12

12,12∑

<1=1,<2=1

�
@
<1,<2

. (2)

We then de�ne the seasonal query set as {&, C,W} = {@ |�@ ≤ W},

where W is the seasonality threshold.

Season-enhanced semantic relevance. As a common approach

to capture the relevance between two sentences, a language model

takes the tokenized sentences with a separator [SEP] in between.
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However, it is challenging to capture seasonality when the seasonal

time token is not explicitly present in the tokenized sentences.

To better learn the seasonal semantic relevance, we propose to

explicitly prepend the seasonal time token at the beginning of the

query texts.

Formally, given a query and season (@8 , C) ∈ {&, C,W}, and a

product 08 , 08 ∈ �
@ , the product text of 08 is X8 . Denote the seasonal

time token as C , the tokenized input to a language model is

 = [[2;B]; C ;@8 ; [B4?];X8 ; [B4?]] . (3)

The token embedding vector is

$ = 5; ( ), (4)

where 5; is the language model. /
@
8 (C) is the semantic embedding

of the [2;B] token, where /
@
8 (C) ∈ $ . We hypothesize that prepend-

ing the seasonal time token to a seasonal query will help the self-

attentions of language models like BERT to attend on the seasonal

signal during training.

Enhancing seasonal semantic relevance with behavior fea-

tures. Given tabular behavior features Z8 , MAG concatenates the

semantic embedding /
@
8 (C) with Z8 to produce a gating vector [,

where,[ is the weight matrix, 18 is a scalar bias, and ' is a non-

linear activation function. The gating vector [ measures the e�ect

of additional modality conditional on the current context.

[ = R

(
,[

[
/
@
8 (C); Z8

]
+ 18

)
. (5)

Subsequently, a non-text displacement vector�
@
8 (C) is created from

the tabular behavior features Z8 with its gating vectors.

�
@
8 (C) = [ ·

(
,ℎ/

@
8 (C)

)
+ 1ℎ, (6)

where,ℎ is a weight metrix and 1ℎ is a scalar bias. Finally, we take

a weighted summation of the semantic embedding /
@
8 (C) with its

associated non-text displacement.

/
@
8 (C) = /

@
8 (C) + U�

@
8 (C), (7)

where/
@
8 (C) is the enhanced semantic embeddingwith behavior fea-

tures. The weight of the displacement vector is controlled through

a scaling factor U to ensure that it remains in a reasonable range.

U = min(

(
∥/
@
8 (C)∥2

∥�
@
8 (C)∥2

)
∗ V, 1), (8)

where ∥ · ∥ is the !2 norm and V is a hyperparameter. V=1.0 in our

experiments.

2.2 Loss functions

While not ideal, pointwise losses such asmean-square error (MSE) [5]

are still used for its simplicity and scalability in product search sys-

tems. MSE measures the error between the predicted relevance

score B
@
8 (C) of a given query-product pair (@, 08 ) and their ground

truth relevance. Purchase conversion rate is a commonly used surro-

gate for the ground truth (@, 08 ) relevance, de�ned as %�'(@, 08 , C) =
%DA2ℎ0B4 (@,08 ,C )

�<?A4BB8>=B (@,08 ,C )
.

As pointwise loss functions treat the relevance prediction as a

simple regression of the ground truth relevance for each individual

query-product pair (@, 08 ), they ignore possible interactions be-

tween products. Moreover, pairwise loss functions are only loosely

related to the evaluation metrics for product ranking such as Nor-

malised Discounted Cumulative Gain (NDCG), causing a mismatch

between the optimization objective and the evaluation criterion.

Therefore, we propose to use listwise loss functions that better

align with the evaluation metric in our model [10, 15]. However,

NDCG cannot be directly used as the loss function, as it is non-

di�erentiable. Therefore, we use a surrogate loss function, Neural-

NDCG [9], to approximate the NDCG score. Below we will �rst

de�ne NDCG, then summarize NeuralNDCG.

Let A 9 denote the relevance of the product ranked at the 9-th

position, 6(·) denote a gain function and 3(·) denote a discount func-

tion. The Discounted Cumulative Gain (DCG) at the :-th position

is de�ned as DCG@: =
∑:
9=1 6

(
A 9

)
3 ( 9), and NDCG at the :-th

position is de�ned as

NDCG@: =
1

maxDCG@:
DCG@: (9)

where maxDCG@: represents the maximum possible value of

DCG@: . Since the sorting operator is the source of discontinuity

in NDCG (and other IR metrics), by substituting it with a di�eren-

tiable approximation we obtain a smooth variant of the metric. The

NeuralNDCG method aims to approximate the gain function 6(·).

NeuralNDCG: (g) (B,~) = #
−1
:

:∑

9=1

(scale(%̂) · 6(~)) 9 · 3 ( 9) (10)

where g = 1.0 is a temperature parameter controlling the accuracy

of approximation. #−1
:

is the maxDCG at :-th rank, %̂ is the per-

mutation matrix to approximate the sorting operator, ~ represents

the ground truth labels, B20;4(·) is Sinkhorn scaling and 6(·) and 3(·)

are their gain and discount functions.

3 EXPERIMENTAL SETTINGS

Dataset To train the model, we sampled seasonal queries from a

year of customer search record from an online shopping platform.

All queries in the candidate pool is required to have at least one

purchase. Additionally, we require a (query, product, season) triplets

with at least 20 impressions to ensure reliable PCR estimation. As

a result, the �nal train set consists of 2,800 queries together with

an average of 120 associated impressed products. To ensure a fair

evaluation, we created our test set by sampling queries queries

from January to June of the following year. Specially, the test set

contains about 40% new products not seen in the training set.

For training with the listwise loss function, the 120 products

associated with a given query is randomly sampled into groups of

16 products with replacement. The listwise loss function minimizes

the loss on these groups. Our model was trained with Adamw

optimizer with a learning rate of 0.00003 and a dropout rate of 0.1.

Evaluation MetricsWe compare the performance of all mod-

els using both relevance and business metrics. We report ranking

performance by measuring NDCG at rank cuto�s at 8 and 22, and

examine the business impact with Price Weighted Purchases (PWP)

with the same cuto�s (i.e., PWP@K for  =8, 22)1.We use NDCG as

the primary metric for model selection and evaluation as it is the

standard objective for relevance model training. PWP@ serves as

secondary metric as it indicates business impact.

1To compute the PWP@ , we �rst sort the query-product in each query group in
the evaluation data in descending order of the output score of the model. We then
compute the average of PWP in the top  results
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Table 1: Summary of methods performances without or with seasonal signal (With MSE as loss function)

Without seasonal signal With seasonal signal

Method NDCG@8 NDCG@22 PWP@8 PWP@22 Method NDCG@8 NDCG@22 PWP@8 PWP@22

Semantic relevance

BERT 0.2502 0.3661 1.0 1.0 SE-BERT 0.2530 (+1.12%) 0.3687 (+0.71%) 1.009 (+0.89%) 1.007 (+0.70%)

+ Behavior features

BERT+MAG 0.2770 0.3834 1.090 1.076 SE-BERT+MAG 0.2835 (+2.35%) 0.3887 (+1.38%) 1.102 (+1.04%) 1.077 (+0.10%)

BERT+Con - - - - SE-BERT+Con 0.2830 0.3882 1.109 1.091

BERT+Add - - - - SE-BERT+Add 0.2827 0.3880 1.108 1.088

PWP@K (K=8 or 22) are normalized by PWP@K for the baseline method (BERT without seasonal signal and without behavior feature) to omit absolute numbers.

+G% in parentheses indicate the percentage gain of corresponding metrics against the models trained with the similar method but without using seasonal signal.

These highlight the e�ect of adding seasonal signal for relevance modeling. Con: concatenation, Add: addition.

4 EXPERIMENTAL RESULTS

We �rst studied the impact of adding seasonal signal as additional

input into the language model to learn the query-product semantic

similarity. We trained a series of models by varying the input to our

model. For input to the language model, we use product title as well

as metadata such as style, color, materials. In addition to textual

information, behavior features such as product price, product sale

velocity, user review rating, number of user reviews, product ages

can provide additional signal to enhance the seasonal relevance

prediction. Thus, we combine the output from the language model

with these behavior features as input to the MLP layers for �nal

relevance prediction.

We �rst studied the e�ect of di�erent time granularity for de�n-

ing seasons. We tried two de�nitions: 1) each month is a “season”;

2) six seasons de�ned as: Spring (March and April), Summer (May

and Jun), Moonsoon (July and August), Autumn (September and

October) and Pre-winter (November, December) and Winter (Janu-

ary and February)2. Granularity at month-level has a well-de�ned

boundary across months and is independent of the geo-location,

but it su�ers from the sparsity issue for a given (query, product,

time) triplet as there are around 70% of triplets with no purchase

records in purchase data. Our results show that the 6-season de�ni-

tion outperforms the month-based season classi�cation. Therefore,

we use the 6-season de�nition for all our following experiments.

4.1 E�ectiveness of Seasonal Signal

Table 1 presents the summary of model performance for with and

without seasonal signals. Our �rst observations is that with only

the textual input, SE-BERT outperforms BERT. Using BERT as the

baseline, SE-BERT improves NDCG@8 and NDCG@22 by 1.12%

and 0.71%, respectively. It also improves PWP@8 and PWP@22

by 0.89% and 0.70%, respectively. It demonstrates the e�ectiveness

of enhancing the seasonality in semantic relevance matching. Sec-

ondly, we observe that augmenting the semantic embedding with

behavior features improves themodel performance. SE-BERT+MAG

exceeds SE-BERT with a large margin on all metrics. Speci�cally,

compared with BERT+MAG, which is not seasonal-enhanced, SE-

BERT+MAG achieves 2.35% NDCG@8 and 1.38% NDCG@22 gains.

We hypothesize that the increases in the gain (e.g. the gain for

NDCG@8 is increased to 2.35% from 1.12%) is attributed to the

2This de�nition of 6 seasons is commonly accepted season classi�cation in India[2].

bene�t that MAG brings to SE-BERT in learning seasonal semantic

relevance.

Additionally, we compare two other feature fusion methods with

MAG: concatenation (SE-BERT+Con) and addition (SE-BERT+Add).

For concatenation, we concatenate non-text vector with the seman-

tic embedding of SE-BERT. For addition, we project the semantic

embedding and the behavior feature vector into the same dimen-

sion, then add them element-wise. Compared with SE-BERT+Con

and SE-BERT+Add, SE-BERT+MAG achieves the best performance

on the primary evaluation metrics, NDCG@8 and NDCG@22.

4.2 E�ectiveness of Listwise Loss Function

We study the impact of using list-wise loss (NeuralNDCG) over

point-wise loss (MSE). Speci�cally, we compare two models, both

with seasonal tokens and behavior features, but trained with two

di�erent loss functions:MSE andNeuralNDCG. As shown in Table 2,

training model with NeuralNDCG outperforms MSE consistently

across all metrics.

Table 2: Ranking performance of using di�erent loss functions

(Both models are trained with SE-BERT with MAG to fuse behavior

features with BERT output)

Loss function NDCG@8 NDCG@22 PWP@8 PWP@22

MSE 0.2835 0.3887 1.102 1.077

NeuralNDCG 0.2920 0.3945 1.124 1.096

5 CONCLUSIONS

In this paper, we propose a season-enhanced language model to pre-

dict seasonal relevance of query-product pairs for product search.

We demonstrate that including the season signal can improve the

ranking performance of neural ranking model. We also show the ef-

fectiveness of incorporating multiple modalities (behavior signals)

into existing language model through a MAG adaption. Fine-tuning

the season-enhanced BERT model with listwise loss function (neu-

ralNDCG) further boosts the model performance by bridging the

gap between the loss function and ranking metric. Our future work

includes incorporating other modalities such as product image and

geolocation for seasonal relevance prediction, as we have demon-

strated that additional contextual information can bene�t relevance

matching, and product images may contain extra seasonal signals,

especially for fashion products.
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