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Abstract

At E-Commerce stores such as Amazon, eBay, and Taobao, the

shopping items and the query words that customers use to search

for the items form a bipartite graph that captures search behavior.

Such a query-item graph can be used to forecast search trends

or improve search results. For example, generating query-item

associations, which is equivalent to predicting links in the bipartite

graph, can yield recommendations that can customize and improve

the user search experience. Although the bipartite shopping graphs

are straightforward to model search behavior, they su�er from two

challenges: 1) The majority of items are sporadically searched and

hence have noisy/sparse query associations, leading to a long-tail

distribution. 2) Infrequent queries are more likely to link to popular

items, leading to another hurdle known as disassortative mixing.

To address these two challenges, we go beyond the bipartite

graph to take a hypergraph perspective, introducing a new para-

digm that leverages auxiliary information from anonymized cus-

tomer engagement sessions to assist the main task of query-item

link prediction. This auxiliary information is available at web scale

in the form of search logs. We treat all items appearing in the same

customer session as a single hyperedge. The hypothesis is that items

in a customer session are uni�ed by a common shopping interest.

With these hyperedges, we augment the original bipartite graph

into a new hypergraph. We develop aDual-ChannelAttention-Based

Hypergraph Neural Network (DCAH), which synergizes informa-

tion from two potentially noisy sources (original query-item edges

and item-item hyperedges). In this way, items on the tail are better

connected due to the extra hyperedges, thereby enhancing their

link prediction performance. We further integrate DCAH with self-

supervised graph pre-training and/or DropEdge training, both of

which e�ectively alleviate disassortative mixing. Extensive experi-

ments on three proprietary E-Commerce datasets show that DCAH

yields signi�cant improvements of up to 24.6% inmean reciprocal
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1 Introduction

Customers shop online in global E-Commerce stores such as Ama-

zon, eBay, or Taobao for a variety of items. The stores’ search

engines are responsible for understanding each customer’s query

intent and then retrieving a list of relevant items. The retrieval

processes often use algorithms that leverage a mix of lexical and

behavioral signals. Lexical features include the query text and item

titles, while behavioral signals include actions that customers take

after executing queries, such as clicking on or purchasing a retrieved

item.

In this work, we focus on modeling behavioral signals by �rst

representing customer queries and items in the store catalogs as

nodes in a bipartite graph. The behavioral signals (e.g., clicks and

purchases) serve as edges in the graph by capturing interactions

between queries and items. Machine learning models can then

learn to predict the query-item edges from this graph in the link

prediction task. These predicted behavioral signals can further

improve retrieval algorithms and therefore the customer experience.

Graph neural networks (GNNs) [1, 2] have achieved state-of-

the-art results for link prediction [3] across a wide range of graph-

structured data. Despite strong performance on many types of

graphs, they still su�er from two challenges caused by the raw

query-item bipartite graph.

• First, the success of GNNs hinges on dense and high-quality

connections. Unfortunately, in typical bipartite shopping

graphs, few items are popular enough to be consistently
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searched for, such as everyday household items. Themajority

of items face the cold-start problem [4], where very few

interactions from customers lead to sparse and noisy query-

item edges. These items form a less reliable part of the graph,

known as the long-tail part, and typical GNNs do not perform

well on the long-tail part [4, 5].

• The second challenge lies in the disassortative mixing com-

monly observed in our bipartite shopping graphs [6]: unpop-

ular queries/items are more likely to be connected to popular

items/queries. We show through experimental results that

disassortative mixing is a major hurdle for query-item pre-

dictions. We further demonstrate that disassortative mixing

in shopping graphs leads to the over-smoothing [7] problem,

triggering performance drops in GNN link prediction. More

detailed illustrations of why and how disassortative mixing

happens in our graph are in Sec 3.2.2.

We explore the two aforementioned challenges, identifying their

causes and proposing solutions. Our solution involves using the

wealth of meta-information in the bipartite shopping graph, which

is often overlooked. We refer to this meta-information as auxiliary

information. An example of auxiliary information is anonymized

search records. These records are available at web scale but are

di�cult to model in normal bipartite graphs due to their higher-

order relations. However, they can contain information not present

in the original pairwise relations. For example, items occurring

in the same customer search session may be connected by a com-

mon theme that query-item links do not capture. Therefore, such

auxiliary information can be leveraged to assist the main task of

query-item link prediction. A detailed illustration of the advantages

of utilizing the hypergraph to model the auxiliary information is

in Sec 3.2.1. Both the original bipartite graph and a hypergraph

constructed from auxiliary information provide valuable informa-

tion that the other graph does not. Therefore, we jointly consider

both graphs when predicting user search behavior. Our goal is to

determine how to optimally leverage the auxiliary hypergraph to

assist the main task of query-item link prediction.

In this paper, we study the problem of search behavior prediction

in the following setting: given two di�erent yet related graphs, a

bipartite graph and a hypergraph, we aim to jointly use them to

predict query-item links. Our hypothesis is that using both graphs

is better than using just one. We conceptually illustrate this unique

problem setting in Figure 1. Taking the E-Commerce problem as an

example, we consider two di�erent graphs: a bipartite query-item

graph constructed from search logs and a hypergraph constructed

from auxiliary information. Although the two graphs share the

same node set, their distributions may be di�erent. For instance,

everyday items are densely connected nodes in the query-item

graph due to their popularity. On the other hand, they may be

searched and purchased alone in customer sessions, resulting in

few connections in the hypergraph.

To tackle this problem setting, we �rst propose theDual-Channel

Attention-Based Hypergraph Neural Network, or DCAH, which can

jointly learn better representations from the two input graphs.

In particular, we use the bipartite graph to model the pairwise

relations while leveraging the hypergraph to model the higher-

order relations. To integrate these two relations, we leverage an

attention mechanism to learn the optimal weight each relation

should have for the downstream task. Furthermore, to improve

DCAH’s ability to generalize to the long tail and alleviate the over-

smoothing problem, we incorporate self-supervised learning and

the DropEdge [8] strategies. Self-supervised learning works well

for few-shot generalization [9], which can alleviate the fact that

the long tail faces label sparsity. Meanwhile, DropEdge relieves

the over-smoothing problem [10, 11] introduced by disassortative

mixing. We provide a detailed illustration of the two strategies in

Sec 3.4. In summary, this paper makes the following contributions:

• We study the query-item link prediction problem in a spe-

cial setting: improving the main task of search behavior

prediction (link prediction) with the aid of accessible auxil-

iary information. We use the auxiliary information to create

a second hypergraph supplementing the original bipartite

graph.

• We propose a new framework, DCAH, to tackle our unique

problem setting by jointly capturing the information of the

bipartite graph and the hypergraph. Additionally, we seam-

lessly incorporate self-supervised learning to improveDCAH’s

generalization ability on the original graph’s long tail and

DropEdge to relieve the over-smoothing problem.

• We conduct experiments on three proprietary E-Commerce

datasets. Our experimental results show that our approach

not only improves the overall link prediction performance,

but also generalizes better to the long tail compared to exist-

ing o�-the-shelf approaches.

2 Related Work

2.1 Session-Based Recommendation

Session-based recommendation (SBR) shares some characteristics

with our problem setting. However, though both settings involve

user search behavior, they di�er in their motivations, solutions,

and �nal goals. Generally, a session is a transaction with multiple

purchased items in one shopping event. SBR focuses on next-item

prediction by using real-time user behavior [12]. It can be seen as a

form of personalized recommendation. However, we focus on query-

item link prediction rather than user-oriented recommendation,

and our problem setting does not involve inter-user relationships.

Additionally, initial exploration in SBR mainly focuses on se-

quence modeling, including traditional Markov decision processes

[13] and deep learning models such as recurrent neural networks

(RNNs) and convolutional neural networks (CNNs) [14]. More re-

cently, GNN has shown promising results in SBR [15, 16]. To cap-

ture the complex higher-order item correlations, DHCN [12] and

SHARE [17] constructed session-induced hypergraphs to model

item correlations and user intent in SBR, which achieved superior

performance against previous GNN-based models. This also indi-

cates the advantages of hypergraphs over normal graphs when

modeling high-order relations.

2.2 Graphs/Hypergraphs in Recommendation

Since graphs can naturally model relational data such as item-item,

user-user, or user-item interactions, GNN-based models have per-

formed well in recommendation systems [18, 19]. GCMC [20] uti-

lized neural graph autoencoders to reconstruct a user-item rating
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Figure 1: Construction of the hypergraph and the pipeline of the proposed DCAH model.

graph. NGCF [21] proposed to construct a user-item bipartite graph

and leverage GNNs to model relations between users and items. In

social recommendation, relations between users can be exploited

with social graphs [16, 22]. For example, Di�Net [22] adopted GCNs

to model the di�usion of user embeddings among their social con-

nections. In addition, inspired by the ability of hypergraphs to

model complex higher-order dependencies [23, 24], recent works

have attempted to capture interactions via hypergraph structure

and uniform node-hyperedge connections, including HyRec [25],

DHCF [26], and MHCN [27]. HyRec attempted to propagate infor-

mation among multiple items by considering users as hyperedges.

DHCF modeled hybrid multi-order correlations between users and

items based on the hypergraph structure. MHCN leveraged social

relations to create a hypergraph that improves recommendation

quality when user-item interaction data is sparse.

2.3 Contrastive Representation Learning

Contrastive learning e�ectively captures consistent feature repre-

sentations under di�erent views [28]. It has achieved promising

results in various domains, such as visual data representation [29],

language data understanding [30], graph representation learning

[31, 32], and recommendation systems [27, 33]. These contrastive

learning approaches use auxiliary signals speci�c to their data or

tasks. Concurrently, HCCF [33] jointly captured local and global

collaborative relations with a hypergraph-enhanced cross-view

contrastive learning architecture. However, their self-supervised

learning setting is di�erent from ours, since we augment the origi-

nal bipartite graph and hypergraph and maximize the agreement

between the two generated variants, following the standard graph

contrastive learning pipeline [32].

2.4 Disassortative Mixing

Many scale-free networks in the real world show the tendency

where highly connected nodes link with other highly connected

nodes, which is de�ned as assortative mixing. The reverse is also

true in some networks, where highly connected nodes are more

likely to make links with isolated, less connected nodes, which is

de�ned as disassortative mixing. Biological and technological net-

works typically show a disassortative mixing pattern. In [34], the

authors found that online social networks also exhibit a disassorta-

tive mixing pattern, and [6] observed disassortative mixing in the

customer interaction networks of E-Commerce stores. Although dis-

assortative mixing has been observed in the E-Commerce domain,

to the best of our knowledge, no formal study on how disassortative

mixing a�ects the performance of recommendation models and

how to relieve the issue currently exists. In this paper, we reveal

how disassortative mixing triggers the over-smoothing problem

and utilize two existing o�-the-shelf approaches, self-supervised

learning and DropEdge [8], to mitigate it.

3 Methodology

In this section, we �rst introduce the notations and de�nitions

used throughout the paper, and then we show how the auxiliary

information is modeled as a hypergraph. After that, we revisit

the two challenges in the query-item graph. Then, we present

the DCAH framework. Finally, we discuss how we integrate self-

supervised learning and DropEdge to improve the generalization

ability of our model and relieve the over-smoothing problem.

3.1 Notations, De�nitions, and Hypergraph

Construction

Notations. Let& = {@1, @2, @3, . . . , @#&
} and � = {81, 82, 83, . . . , 8#�

}

denote the sets of queries and items, where #& and #� are the num-

ber of queries and the number of items, respectively. # denotes the

total number of queries and items. Each browse/search record is rep-

resented as a set {8A,1, 8A,2, 8A,3, . . . , 8A,<}, where 8A,: ∈ � (1 ≤ : ≤ <)

represents an interaction between an anonymous user and an item

within the browse/search record A .

HypergraphDe�nition. Ahypergraph is de�ned asG = (V, E),

where V is a set of # unique vertices and E is a set of " hyper-

edges. Each hyperedge 4 ∈ E connects two or more vertices. The

hypergraph can be represented by an incidence matrix H ∈ R#×" ,

where �84 = 1 if the hyperedge 4 ∈ E contains a vertex E8 ∈ V ,

otherwise 0. For each vertex and hyperedge, their degrees �88 and

�44 are de�ned as �88 =
∑"
4=1 �84 and �44 =

∑#
8=1 = �84 , respec-

tively. D and B are diagonal matrices. �88 and �44 are the 8-th and

4-th diagonal elements of D and B, respectively.

Hypergraph Construction. To capture relationships beyond

pairwise ones in the browse/search records, we adopt a hypergraph

G = (V, E) to represent each record as a hyperedge. Formally, we
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Figure 2: Node-degree distribution of one E-Commerce query-

item bipartite graph and the related auxiliary hypergraph.

denote each hyperedge as {8A,1, 8A,2, 8A,3, . . . , 8A,<} ∈ E and each item

as 8A,: ∈ V(1 ≤ : ≤ <). The hypergraph construction process is

shown in the left part of Figure 1. As illustrated, the original record

data is organized as linear sequences where two items, 8A,<−1 and

8A,< , are only connected if a user interacted with 8A,<−1 before 8A,< .

After transforming the record data into a hypergraph, any two

items browsed/searched in the same record are connected. This

allows us to concretize the many-to-many higher-order relations.

3.2 Two Challenges in the Query-Item Graph

In this section, we revisit the two unique challenges of the raw

query-item bipartite shopping graphs: the long-tail distribution and

disassortative mixing. Speci�cally, we investigate the node-degree

distribution of the query-item graph and show how the auxiliary

hypergraph helps relieve the problem. Additionally, we empirically

demonstrate why disassortative mixing is a major hurdle for link

prediction models.

3.2.1 Long-Tail Distribution Many real networks are scale free in

nature, i.e, the node degrees follow power-law distributions [35].

As a type of real network, query-item graphs also tend to have a

similar power distribution pattern. The degree distribution plot of

one E-Commerce query-item graph used in our paper is presented

in Figure 2 (blue line). In the �gure, we can �nd that only a few

(less than 10%) nodes have node degree greater than ten, while the

majority of nodes have fewer than ten neighbors. In summary, the

degree distribution of the E-Commerce query-item graph follows

the long-tail degree distribution. The long-tail degree distribution

indicates that while there exist some popular queries/items which

connect with many other items/queries, most queries/items connect

only to a few items/queries, which is called the long-tail part. In

addition, the long-tail part is less reliable since behavioral query-

item relations (e.g., from clicks or views) can introduce noise (e.g.,

misclicks) to the constructed interaction graph [36]. In this case,

existing GNNs fail to perform well on the long-tail part due to

data sparsity and noisy interactions. In addition, most GNN-based

methods design the message-passing mechanism such that the

embedding propagation is only performed with neighbors in the

original graph.

As mentioned in the introduction, there exists one type of aux-

iliary information that we can introduce to alleviate the above

issue: anonymized search records. Previous methods, such as the

K-Nearest Neighbor (KNN) graph based on node feature similarity

[37, 38], methods based on conventional Markov chains [39, 40],

and methods based on factorization [41, 42], have been proposed

to model some kinds of auxiliary information in similar problem

settings. However, these methods cannot capture higher-order de-

pendencies [43, 44] such as those in customer search sessions. Hy-

pergraphs [45], which generalize the concept of an edge to connect

more than two nodes, can organically model complex, higher-order

relations. In addition, the auxiliary hypergraph can generally enrich

the connectivity of the nodes of the raw bipartite graph. As shown

in Figure 2 (yellow line), the node degrees are boosted via a huge

margin, especially on the long-tail part.

3.2.2 Disassortative Mixing Since there exist only a few popular

queries and items in the query-item graph, we assume it is not

uncommon that some popular queries/items may link to unpopu-

lar items/queries. To verify this phenomenon, we investigate the

popular queries of the graph, and �nd that the queries with highest

degrees tend to be very general queries, such as “toothbrush”, “tis-

sue”, “TV”, etc. Such queries connect to many related items, some of

which are unpopular or specialized items, such as premium bamboo

toothbrush, baby tissue, LED 4K UHD TV etc. Similarly, for popu-

lar everyday household items like water, toilet paper, etc., due to

popularity, many customers may search for them a large number

of times. In their search, the customers may generate queries with

infrequent terms, such as “best spring water in the world” and “ultra

soft toilet paper for infant.” Based on this observation, we believe

that disassortative mixing exists in the E-Commerce query-item

graph and conduct the degree assortativity analysis of the graph.

Degree assortativity, A ∈ [−1, 1], is a measure of similarity be-

tween nodes and their neighbors in terms of degree [46]. Formally,

degree assortativity is de�ned as the Pearson Correlation Coe�-

cient of degrees between all pairs of connected nodes. The value

A = −1 implies that the network is totally disassortative (negative

correlation) and A = 1 implies that the network is totally assortative

(positive correlation). The assortativity plot of one E-Commerce

query-item graph used in this paper is shown in Figure 3. The query-

item bipartite graph is relatively disassortative with A = −0.07. In

the �gure, we observe that the neighbors of high-degree nodes have

relatively low degrees, while the neighbors of some low-degree

nodes have very high degrees. In summary, the assortativity plot

of the query-item graph suggests that unpopular queries/items are

more likely to connect to popular items/queries, making the graph

disassortative, which agrees with our intuition.

Relative degree evaluates a node’s degree compared to its neigh-

bors’ degrees [47]. When all the nodes have the same degree, the

relative degree equals 1. On the other hand, relative degree will

be low if a node’s degree di�ers signi�cantly from its neighbors’

degrees. As a type of disassortative graph, the relative degree of

the E-Commerce query-item bipartite graph is relatively low com-

pared to that of assortative graphs. In [47], the authors theoretically

showed that the low relative degree will trigger the over-smoothing

problem, such that all nodes’ representations will converge to a

stationary point with an increase in the number of layers of graph
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Figure 3: Assortativity plot (degree vs average neighbor’s

degree) for one E-Commerce query-item bipartite graph.

convolutions. Although over-smoothing is usually discussed in the

node classi�cation task, it also acts as a major hurdle in the link pre-

diction task. We show that this is true in our query-item prediction

task with our experiment results.

3.3 A General DCAH Framework

Figure 1 sketches the overall framework of DCAH. At a high level,

DCAH consists of a bipartite graph channel and a hypergraph

channel. The bipartite graph channel captures pairwise query-item

relations while the hypergraph channel captures higher-order item-

item relations. DCAH uses an attention layer to compute the op-

timal weighted combination of the channel outputs for the down-

stream task, query-item prediction.

Bipartite Graph Channel and Convolution. The original bi-

partite shopping graph is an undirected graph containing only

query-item relations. First, we initialize the item embeddings spe-

ci�c to the bipartite graph channel, X
(0)��
�

. For the query node, the

raw text of the user query is available to generate node features

using Byte-Pair Encodings [48], denoted as X
(0)��
&

. The adjacency

matrix for this bipartite graph G� is de�ned as A ∈ R#×# . Let

Â = A + I, where I is the identity matrix. D̂ ∈ R#×# is a diago-

nal degree matrix where D̂?,? =
∑=
@=1 Â?,@ . The bipartite graph

convolution is then de�ned as:

X(;+1)�� = D̂−1/2ÂD̂−1/2X(;)��Θ�� (1)

where Θ�� is the learnable shared parameter of the convolutional

layer. In each convolution, the query/item node gathers information

from its neighboring item/query nodes. By doing so, the learned

X can capture the pairwise query-item relation information. We

then pass X(0) through ! graph convolutional layers to obtain the

�nal output embeddingsX(!) . We useX
(!)��
&

andX
(!)��
�

to denote

query and item embeddings, respectively.

HypergraphChannel andConvolution. The hypergraph chan-

nel is used to capture the item-level higher-order relations. The

primary challenge of de�ning a convolution operation over the hy-

pergraph is how the embeddings of items are propagated. Similar

to the bipartite graph channel, we �rst initialize the hypergraph-

channel-speci�c item embeddings X
(0)��

�
. Following the spectral

hypergraph convolution proposed in [23], we de�ne our hyper-

graph convolution as:

X
(;+1)��

�
= D−1/2HWB−1H)D−1/2X

(;)��

�
Θ�� (2)

Here,W is the hyperedge weight matrix, where we assign all hyper-

edges the weight of 1, andΘ�� is the learnable shared parameter of

the convolutional layer. The hypergraph convolution can be viewed

as a two-stage re�nement performing a node-hyperedge-node fea-

ture transformation on the hypergraph structure. The multiplica-

tion of H) implements the information aggregation from nodes

to hyperedges. Pre-multiplying H can be viewed as aggregating

information from hyperedges to nodes. Note that D and B play the

role of normalization. After passing X
(0)��

�
through ! hypergraph

convolutional layers, we obtain the �nal item embeddings X
(!)��

�
.

Inter-Channel Aggregation. With the dual-channel structure,

we generate two groups of item embeddings, X
(!)��
�

and X
(!)��

�
,

via the bipartite graph and hypergraph channels, respectively. Since

both groups of item embeddings will contain some valuable infor-

mation, we add an additional attention layer to learn the optimal

weighted combination of the two groups of embeddings for our

downstream task. This strategy will improve robustness when fus-

ing the two groups’ embeddings. Speci�cally, we �rst transform

both channels’ embeddings through a nonlinear transformation

(e.g., a single-layer MLP). Then, we measure the importance of a

channel-speci�c embedding as the similarity between the trans-

formed embedding and a channel-level attention vector q. Finally,

we average the importance of all channel-speci�c item embeddings.

We can interpret this as the importance of each channel, denoted

asFq2
.

Fq2
=

1

|V|

∑

8∈V

q) · tanh (W · x
q2

8 + b), q2 ∈ {��,��} (3)

Here,W is the weight matrix, b is the bias vector, x
q2

8 is the channel-

level embedding, tanh(·) is the activation function, q is the channel-

level attention vector, andV is the set of the item nodes. Note that,

for the sake of meaningful comparison, all the above parameters

are shared across all channels and channel-speci�c embeddings.

After obtaining the importance of each channel, we normalize them

with the softmax function. The weight of channel q2 , denoted as

Vq2
, can be obtained by normalizing the above importance of all

channels using the softmax operator:

Vq2
=

expFq2∑
q2

expFq2

, q2 ∈ {��,��} (4)

Vq2
can be interpreted as the contribution of channel q2 for a spe-

ci�c task, with a higher Vq2
indicating a higher importance for

channel q2 . With the learned weights as coe�cients, we can fuse

the two channel-speci�c embeddings to obtain the �nal item em-

bedding X!
�
as follows:

X!
� = Vq��

· X
(!)��
�

+ Vq��
· X

(!)��

�
(5)

3.4 Enhancing DCAH with Self-Supervised

Learning and DropEdge

Although the auxiliary hypergraph can augment the original bi-

partite graph, data sparsity, the long-tail issue, and disassortative
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mixing still exist, which might impede the generalization ability

of our model. Inspired by prior studies of self-supervised learning

and DropEdge on graphs, we seamlessly integrate these two simple

but e�ective training tricks into DCAH.

Self-Supervised Learning (SSL). In this work, we follow the

graph self-supervised learning framework proposed in [32], which

consists of the four major components: 1) Graph data augmenta-

tion; 2) GNN-based encoder; 3) Projection head; 4) Contrastive loss

function. It should be noted that we made some modi�cations to

components 1, 2, and 4. Speci�cally, for the graph data augmenta-

tion, the original framework only has one input graph, while we

consider two input graphs, the bipartite graph G� and the hyper-

graph G� . Although the hypergraph is di�erent from the bipartite

graph, the representation formats are similar. Therefore, both given

graphs <G� , G�> can undergo graph data augmentations proposed

in [32] to obtain two correlated views, <Ĝ�8
, Ĝ�8

>, <Ĝ� 9
, Ĝ� 9

>, as

a positive pair. Then, our model DCAH extracts node-level embed-

dings h8 and h9 for two augmented graph pairs <Ĝ�8
, Ĝ�8

> and

<Ĝ� 9
, Ĝ� 9

>, respectively. After that, as advocated in [49], a projec-

tion head in the form of a two-layer perceptron (MLP) is applied

to obtain I8 and I 9 . Finally, a node-level contrastive loss L(·) is

utilized to enforce maximizing the consistency between positive

pairs I8 , I 9 compared with negative pairs:

L = − log
exp(B8<(I=,8 , I=,9 )/g)

∑#
=′=1,=′≠= exp(B8<(I=,8 , I=′, 9 )/g)

(6)

where B8<(I=,8 , I=,9 ) = I)=,8I=,9/| |I=,8 | | | |I=,9 | |, I=,8 , g is the tempera-

ture parameter and # is number of nodes.

In summary, our contrastive learning component maximizes

the agreement between two variants of two graph augmentations.

Furthermore, the setting is di�erent from that of cross-channel

views contrastive learning [12] and global-local views contrastive

learning [33].

DropEdge. As mentioned in Sec 3.2.2, the disassortative mix-

ing of the query-item graph triggers the over-smoothing problem,

which acts as a major hurdle to the models’ performance on the

query-item predictions. Previous literature [8, 10, 11] have theoreti-

cally and empirically shown that the DropEdge [8] can help relieve

over-smoothing. Because DropEdge randomly removes a certain

number of edges from the input graph at each training epoch, it

can be easily applied to hypergaphs, functioning as a data augmen-

tation mechanism. Therefore, it can be �exibly incorporated into

our model DCAH, similar to self-supervised learning.

4 Evaluation

Our experiments aim to answer the following research questions:

• RQ1: What is the performance of our DCAH compared to

baselines?

• RQ2: How does the auxiliary hypergraph contribute to re-

lieving the long-tail issue of the raw bipartite graph?

• RQ3: How do SSL and DropEdge perform in alleviating the

over-smoothing problem triggered by disassortative mixing?

4.1 Experimental Settings

4.1.1 Dataset Overview. We evaluate the proposed framework on

three proprietary E-Commerce datasets of queries and items, which

are sampled from three di�erent market locales of this E-Commerce

platform. They can all be naturally constructed as bipartite shop-

ping graphs. The query-item associations are sampled so as not to

reveal raw tra�c distributions. We also create three related auxil-

iary item-item hypergraphs from the three locales’ corresponding

anonymized customer engagement sessions, where all customer-

identi�able information has been properly anonymized. The full

dataset statistics are summarized in Table 1. In the table, the den-

sity indicates that all the three E-Commerce datasets are generally

sparse, among which E-Commerce 3 is the sparsest. As for the

degree assortativity, E-Commerce 3 is more disassortative than

E-Commerce 1 and 2.

Table 1: Dataset statistics.

E-Commerce 1 E-Commerce 2 E-Commerce 3

Num. of Nodes 1,181,247 1,059,963 1,375,842

Num. of Edges 1,783,333 1,634,402 2,148,822

Num. of Auxiliary HyperEdges 329,852 238,342 388,042

Degree Assortativity 0.132 0.089 -0.07

Density 1.28 × 4−6 1.45 × 4−6 1.14 × 4−6

4.1.2 Data Splits. We create training, validation, and test splits of

the data to speci�cally study tail and cold-start nodes. Because we

have a bipartite graph and a hypergraph, we manually split the

nodes into four parts, which we refer to as the head, tail1, tail2, and

isolation parts.

We create the head part by �rst selecting nodes that are in the

top 20% highest-degree nodes of both the bipartite graph and the

hypergraph, then inducing a subgraph with the selected nodes.

The tail1 part induces a subgraph on the nodes shared between

the top 20% highest-degree nodes of bipartite graph and the top

20% − 60% highest-degree nodes of hypergraph. Similarly, the tail2

part induces a subgraph on the nodes shared between the top 20%

highest-degree nodes of hypergraph and the top 20%− 60% highest-

degree nodes of the bipartite graph. The isolation part induces a

subgraph on the nodes in the bottom 40% highest-degree nodes of

both the bipartite graph and the hypergraph.

For each part, we randomly sample 20% of the edges for testing

and 10% for validation. The remaining edges are used for training.

In summary, our data split is 70% training, 10% validation, and 20%

testing. Within the test set, each of the four parts, head, tail1, tail2,

and isolation, counts as 25%. In addition, since the downstream

task is link prediction, we must sample negative edges. For each

positive edge in the original graph, containing (source, destination)

nodes, we corrupt the edge by replacing its source or destination

with 100 randomly sampled negative edges (50 for source and 50

for destination), while ensuring the resulting negative edges are

not already present in the original graph. We ensure no overlap

between the positive and negative edges across all split parts.

4.1.3 Evaluation Metrics. We use Recall@N and Mean Reciprocal

Rank (MRR) as the evaluation metrics, which are widely used in link

prediction tasks [50]. # is the number of the top predictions. In our

experiments, we set # to be the number of the true positive edges
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Table 2: Performance comparison on the E-Commerce 1 in

terms ofMRR and Recall. The best results are bold.

Models
Head Tail1 Tail2 Isolation

MRR Recall@N MRR Recall@N MRR Recall@N MRR Recall@N

GCN 14.68
±3.10

6.35
±1.30

13.83
±2.66

4.86
±1.36

15.70
±1.60

3.44
±0.85

25.35
±6.48

3.77
±1.16

GCN+DropEdge 23.24
±2.37

14.11
±1.74

23.22
±2.07

14.73
±1.51

20.95
±5.15

11.02
±3.44

34.59
±6.52

18.71
±1.85

GCN+SSL 58.72
±2.89

34.24
±2.37

58.05
±2.65

33.85
±2.01

50.48
±2.46

31.69
±2.38

51.10
±0.79

31.48
±0.41

GCN+SSL+DropEdge 56.68
±2.04

33.95
±2.33

56.74
±2.25

31.56
±1.50

52.20
±1.59

33.43
±2.15

55.74
±3.34

32.87
±0.44

HyperGCN 7.47
±0.84

2.10
±0.79

10.77
±1.00

2.36
±0.71

14.26
±1.89

3.34
±2.14

26.15
±3.99

4.08
±0.95

HyperGCN+DropEdge 12.48
±1.68

10.45
±4.89

16.60
±1.90

9.73
±4.25

21.02
±4.08

10.28
±3.06

24.39
±4.16

12.68
±5.21

HyperGCN+SSL 40.23
±1.05

30.07
±1.62

36.25
±0.53

27.45
±0.74

57.13
±3.00

38.63
±1.44

58.80
±3.80

38.73
±0.25

HyperGCN+SSL+DropEdge 41.22
±0.16

31.01
±1.01

35.67
±0.29

28.29
±0.92

62.18
±0.27

44.39
±0.51

62.33
±6.52

44.46
±1.48

DCAH 16.06
±4.36

6.40
±1.62

15.37
±3.83

5.09
±1.23

16.25
±4.09

4.02
±0.94

30.10
±9.54

5.10
±2.11

DCAH+DropEdge 24.26
±2.97

15.83
±2.40

22.96
±2.75

15.35
±2.19

23.81
±4.31

17.25
±2.99

34.47
±6.32

17.84
±1.96

DCAH+SSL 59.47
±3.55

35.56
±2.29

58.03
±3.30

34.47
±2.05

60.88
±1.05

42.69
±2.17

64.00
±3.60

43.78
±0.92

DCAH+SSL+DropEdge 60.96
±3.21

36.67
±2.32

59.59
±2.78

36.32
±2.44

63.79
±3.24

45.85
±2.83

65.70
±3.10

45.80
±0.68

Table 3: Performance comparison on the E-Commerce 2 in

terms ofMRR and Recall. The best results are bold.

Models
Head Tail1 Tail2 Isolation

MRR Recall@N MRR Recall@N MRR Recall@N MRR Recall@N

GCN 14.88
±2.50

5.69
±1.16

15.49
±2.58

4.73
±0.96

14.73
±2.79

3.53
±0.65

24.33
±5.59

4.05
±0.87

GCN+DropEdge 23.26
±2.26

13.91
±1.12

24.77
±2.46

12.01
±0.76

24.25
±5.83

10.31
±0.81

39.36
±7.47

12.98
±0.74

GCN+SSL 56.44
±2.80

33.98
±1.98

58.01
±2.78

35.37
±1.84

58.81
±4.46

35.09
±2.97

64.86
±4.32

36.61
±0.52

GCN+SSL+DropEdge 57.86
±1.74

34.20
±1.59

57.98
±2.70

36.91
±1.30

59.55
±4.33

35.88
±2.80

65.19
±3.45

36.90
±0.45

HyperGCN 10.36
±0.94

2.76
±0.76

14.70
±1.08

3.21
±0.59

19.64
±2.19

3.30
±0.49

39.14
±5.92

6.63
±1.89

HyperGCN+DropEdge 27.48
±2.39

7.02
±2.34

32.59
±2.10

10.40
±3.39

41.76
±4.03

17.50
±6.04

53.14
±8.64

20.98
±7.69

HyperGCN+SSL 52.68
±0.99

35.49
±1.34

51.34
±0.61

37.60
±0.72

72.56
±0.65

52.67
±1.19

78.82
±5.26

55.68
±1.40

HyperGCN+SSL+DropEdge 56.26
±0.37

37.53
±1.23

53.03
±0.16

36.69
±0.83

75.10
±0.49

54.47
±1.27

80.73
±5.70

57.26
±1.44

DCAH 17.22
±5.93

6.01
±1.83

17.85
±5.24

5.00
±1.53

17.97
±2.85

3.72
±0.88

36.69
±6.00

4.68
±1.61

DCAH+DropEdge 28.58
±1.02

15.25
±2.02

34.43
±4.35

15.16
±1.16

44.73
±2.66

13.73
±1.50

54.99
±5.65

12.53
±1.17

DCAH+SSL 69.53
±0.82

46.50
±1.79

70.80
±0.78

47.85
±1.84

82.48
±0.49

57.46
±1.71

81.14
±0.92

58.13
±0.59

DCAH+SSL+DropEdge 72.38
±0.95

47.59
±2.74

73.80
±0.97

48.78
±1.67

84.46
±0.55

59.56
±1.43

83.43
±0.72

59.75
±0.67

of the testing part. Recall@N measures whether the actual edge is

on the top-# predictions. Thus, it denotes the proportion of the

number of predictions containing the actual edge among all positive

edges. MRR measures the ranking performance of the model as an

average of reciprocal ranks of the actual edge within the prediction.

Both evaluation metrics are appropriate to measure the model’s

performance, but Recall@N is more related to the ability to �nd

unseen edges. Unseen edges are scarce in the tail and isolation parts

and are therefore more important to predict. Thus, Recall@N is

more important than MRR, especially under the cold-start scenario.

We report the mean and standard deviation of Recall@N and MRR

after 10 runs.

4.1.4 Baselines. Due to the uniqueness of our problem setting, the

meaningful baselines are limited. In our experiments, we compare

our DCAH with two commonly used baselines: GCN [1], and Hy-

perGCN [23]. And for fair comparison, the bipartite graph channel

and the hypergraph channel use the GCN and HyperGCN, respec-

tively. Besides, we also adapt the SSL and/or DropEdge strategies

to the GCN and HyperGCN as additional baselines.

4.1.5 Hyperparamter Se�ings. We use Adam optimizer with the

learning rate of 14−3. The hidden state dimension is 64. For both the

bipartite graph and hypergraph channels, we stack two propagation

layers. The batch size and dropout ratio are set to 1024 and 0.25,

respectively. The temperature parameter g is set to 0.1 to control

the strength of gradients in our contrastive learning.

Table 4: Performance comparison on the E-Commerce 3 in

terms ofMRR and Recall. The best results are bold.

Models
Head Tail1 Tail2 Isolation

MRR Recall@N MRR Recall@N MRR Recall@N MRR Recall@N

GCN 15.49
±3.48

7.28
±1.22

13.44
±1.50

4.08
±0.63

17.04
±2.11

3.38
±0.40

33.93
±5.55

4.12
±0.89

GCN+DropEdge 32.33
±3.16

19.67
±1.77

31.02
±2.45

20.59
±1.50

32.54
±1.86

17.11
±1.70

56.67
±4.04

22.50
±1.87

GCN+SSL 55.72
±3.34

31.55
±2.20

53.70
±3.13

31.20
±1.41

56.36
±4.69

28.76
±2.27

74.35
±4.19

38.70
±1.17

GCN+SSL+DropEdge 56.56
±3.99

33.19
±2.75

55.87
±3.50

33.57
±2.96

59.57
±3.17

29.17
±2.68

77.64
±3.88

40.89
±1.43

HyperGCN 8.63
±0.79

2.51
±0.72

14.38
±1.09

2.99
±0.59

15.09
±1.21

2.66
±1.50

45.52
±5.38

7.67
±5.83

HyperGCN+DropEdge 18.01
±1.97

13.16
±0.82

31.12
±1.86

15.91
±0.76

32.12
±2.68

19.31
±2.16

61.65
±4.39

23.94
±5.18

HyperGCN+SSL 63.20
±0.99

41.11
±0.93

68.05
±0.52

47.85
±1.84

71.59
±0.58

50.78
±0.78

79.14
±0.92

55.68
±1.40

HyperGCN+SSL+DropEdge 61.35
±1.50

41.62
±1.70

67.31
±0.19

48.42
±1.64

69.59
±0.46

49.31
±0.70

91.82
±1.72

66.29
±0.09

DCAH 16.07
±1.38

7.54
±0.65

15.03
±2.72

4.20
±0.47

19.56
±3.99

4.22
±0.67

39.54
±3.82

6.09
±1.99

DCAH+DropEdge 43.66
±2.41

24.76
±2.35

40.95
±3.82

27.24
±2.94

39.87
±3.50

25.88
±2.91

70.34
±3.46

27.22
±1.78

DCAH+SSL 69.53
±0.82

46.50
±1.79

70.80
±0.78

50.78
±0.60

82.48
±0.49

57.46
±1.71

88.26
±3.45

66.00
±0.33

DCAH+SSL+DropEdge 72.28
±1.22

48.82
±1.27

73.10
±0.37

52.98
±0.64

84.78
±0.68

59.80
±1.08

93.87
±3.90

69.79
±0.93

4.2 Overall Performance Validation (RQ1)

As the experimental results shown in Table 2, 3 and 4, our DCAH

consistently outperforms the GCN and HyperGCN across di�erent

E-Commerce datasets in terms of all evaluation metrics, whether

enhanced by self-supervised graph pre-training and/or DropEdge

or not. This observation validates the superiority of our DCAH

method, which can be attributed to: 1) By jointly considering the

auxiliary hypergraph, DCAH can not only model the query-item

relationship, but also preserve the latent high-order item-item simi-

larity relations. 2) Bene�ting from the way that the DCAH combine

the bipartite graph and the auxiliary hypergraph. Note that for the

HyperGCN method, the original bipartite query-item graph is also

utilized since the downstream task is still query-item link prediction.

The key di�erence is that message passing is not performed in the

original bipartite graph compared with DCAH. And in the single-

channel HyperGCN scenario, the query embeddings are query node

features obtained using Byte-Pair Encodings [48]. And HyperGCN

is only adapted to the auxiliary hypergraph to generate the item

embeddings. Although the HyperGCN can only generate the item

embeddings, they work well on the long-tail part. This could be

due to the fact that the auxiliary hypergraph can provide richer

information, which is bene�cial for the scarce query-item interac-

tions of the long-tail part. For example, some unpopular items from

the original bipartite graph may face the cold-start problem, where

the GCN method failed to generate robust embeddings, while these

items can be updated during HyperGCN training thanks to the

high-order item-item relations of the auxiliary hypergraph. In con-

trast, the performance of the HyperGCN drops drastically on the

head part, which also agrees with our intuition that the hypergraph

can also introduce some inevitable noise, e.g., a customer’s interest

may change while browsing, which can potentially link unrelated

items to completely di�erent categories.

In summary, although the auxiliary hypergraph can provide

valuable information, it also introduces the inevitable noise, and

our model DCAH, a simple yet e�ective framework, can jointly

capture and adaptively fuse the two complementary information.

4.3 In Depth Analysis of Hypergraph in

Alleviating Data Sparsity (RQ2)

In this section, we easily investigate how the hypergraph helps alle-

viate the data sparsity. Due to the unique setting of our problem, we
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Table 5: Graph smoothness degrees (measured by MAD) with the encoded query/item embeddings by comparing with the

di�erent models.
Datasets Type GCN GCN+DropEdge GCN+SSL GCN+SSL+DropEdge HyperGCN HyperGCN+DropEdge HyperGCN+SSL HyperGCN+SSL+DropEdge DCAH DCAH+DropEdge DCAH+SSL DCAH+SSL+DropEdge

E-Commerce 1
Query 0.5911 0.6234 0.6751 0.7298 0.5436 0.5436 0.5436 0.5436 0.6147 0.6385 0.7776 0.8237

Item 0.6438 0.6739 0.7158 0.7439 0.6699 0.6931 0.7396 0.7839 0.6913 0.7246 0.7618 0.8270

E-Commerce 2
Query 0.5737 0.6022 0.6493 0.7029 0.5216 0.5216 0.5216 0.5216 0.5955 0.6147 0.7567 0.8069

Item 0.6273 0.6582 0.6913 0.7254 0.6468 0.6735 0.7197 0.7636 0.6731 0.7064 0.7411 0.8085

E-Commerce 3
Query 0.5552 0.5813 0.6220 0.6872 0.5023 0.5023 0.5023 0.5023 0.5726 0.5938 0.7488 0.7995

Item 0.5999 0.6327 0.6753 0.7083 0.6273 0.6493 0.6983 0.7458 0.6563 0.6883 0.7208 0.7894

partition the items into four di�erent groups by jointly considering

their node degrees in bipartite graph and hypergraph. In general,

the head and tail1 parts refer to the head part of the original bipartite

graph, while the tail2 and isolation parts refer to the long-tail part

of the original bipartite graph. From the results shown in Table 2, 3

and 4, we observe that the HyperGCN and DCAH outperform the

GCN on the tail2 and isolation parts. Although the HyperGCN only

takes the auxiliary hypergraph to generate item embeddings, the

superior performance on the long-tail part still shows the potential

of the hypergraph in addressing the data sparsity issue. However,

due to the inevitable noise of the hypergraph, the performance of

the HyperGCN on the head and tail1 part degrades compared to

the GCN. Furthermore, in E-Commerce 1 dataset, we �nd that after

adapting the DropEdge strategy, the performance of the HyperGCN

on the head and tail1 parts is boosted, while the performance on

the isolation part drops a little in terms ofMRR. The possible reason

is that the DropEdge may randomly drop some noisy item-item hy-

peredges, which is bene�cial for the head and tail1 parts. While for

the tail2 and isolation parts, randomly dropping edges may discard

important information of the item-item hyperedges, and these two

parts do not contain too much valuable information of the original

bipartite graph neither, making the performance worse.

In summary, based on the results, we could conclude that the

auxiliary item-item hypergraph has the ability to alleviate the data

sparsity issue of the original bipartite graph. Furthermore, if the

auxiliary item-item hypergraph is more reliable, e.g., contains less

inevitable noise, the bene�ts will be more. And improving the

robustness of the auxiliary item-item hypergraph is our future

research direction.

4.4 E�ect of SSL and DropEdge in Addressing

Over-Smoothing (RQ3)

From the Table 1, we �nd that the three E-Commerce datasets are

neither assortative nor disassortative, which indicates that some

parts of the original query-item interaction structure are disas-

sortative while the others are assortative. Based on our discus-

sion in Sec 3.2.2, we observe the phenomenon that some popular

queries/items may make links with unpopular items/queries. Thus,

we make an assumption that the head part of the original bipartite

graph is more likely to be disassortative while the long-tail part

is more likely to be assortative. Then the over-smoothing issue is

more likely to be observed in the head part rather than the long-tail

part. And from the results of Table 2, 3 and 4, we notice that the

performance of the head and tail1 parts are worse than the tail2

and isolation parts, which validates our assumption.

With the self-supervised graph pre-training and DropEdge, the

graph-based over-smoothing e�ect triggered by the disassortative

mixing can be alleviated in our framework. To validate the e�ec-

tiveness of the two strategies in alleviating the over-smoothing

e�ect, in addition to the superior performance produced by our

DCAH, we calculate the Mean Average Distance (MAD) [51] over

all node embedding pairs learned by the trained DCAH and other

three variants: 1) +DropEdge (with the DropEdge); 2) +SSL (with

the self-supervised pre-training); 3) +SSL+DropEdge (with the self-

supervised pre-training and DropEdge). For complete comparison,

we also calculate the MAD for the other methods, GCN and Hyper-

GCN, with their variants. The quantitative MAD metric measures

the smoothness of a graph in terms of its node embeddings. The

range of MAD is [0, 1], the more closer to 0 the MAD is, the more

similar the node representations are to each other, meaning that all

the node representations become indistinguishable. The measure-

ment results are shown in Table 5, where Query and Item refer to

the average similarity score between query nodes and item nodes,

respectively. And please note that since the HyperGCN method can

only generate the item embeddings, hence, the embedding distance

scores of the query nodes are the same.

From the results, we can observe a general trend for the three

frameworks: GCN, HyperGCN andDCAH. Take DCAH for example,

the DropEdge and SSL can both improve the embedding distance

scores, and SSL has better ability at addressing the over-smoothing

issue. We guess that is because we use the node-level contrastive

loss function in our SSL pre-training, which forces the model to

push all the other nodes away from the anchor node, making all

the node representations distinguishable.

5 Conclusions

In this work, we focus on the query-item prediction problem at E-

Commerce stores. Speci�cally, we discuss the two challenges caused

by the original bipartite query-item graph: long-tail distribution and

disassortative mixing. To address these two challenges, we construct

an auxiliary item-item hypergraph to augment the original bipartite

query-item graph, via using the freely available information from

anonymized customer engagement sessions. In the auxiliary hyper-

graph, the hyperedges contain items present in the same customer

sessions. All items engaged by a customer in a single customer ses-

sion are considered a hyperedge. To tackle the unique setting of the

problem, we propose a dual-channel attention-based hypergraph

neural network, DCAH, to learn the representations of queries and

items by jointly considering the two complementary graphs, the

original bipartite graph and the auxiliary hypergraph. Furthermore,

we integrate DCAHwith self-supervised graph pre-training and the

DropEdge training to alleviate disassortative mixing. We evaluate

our approach on three randomly sampled anonymized E-Commerce

query-item datasets. The experiment results validate the superiority

of DCAH. In the future, we may explore more robust methods to

construct the hypergraph to reduce the inevitable noise.



Search Behavior Prediction: A Hypergraph Perspective WSDM ’23, February 27-March 3, 2023, Singapore, Singapore

References

[1] Thomas N Kipf and Max Welling. Semi-supervised classi�cation with graph
convolutional networks. arXiv preprint arXiv:1609.02907, 2016.

[2] William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation
learning on large graphs. arXiv preprint arXiv:1706.02216, 2017.

[3] Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks.
Advances in Neural Information Processing Systems, 31:5165–5175, 2018.

[4] Vincent Leroy, B Barla Cambazoglu, and Francesco Bonchi. Cold start link
prediction. In Proceedings of the 16th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 393–402, 2010.

[5] Hao Ding, Yifei Ma, Anoop Deoras, Yuyang Wang, and Hao Wang. Zero-shot
recommender systems. arXiv preprint arXiv:2105.08318, 2021.

[6] Bijaya Adhikari, Parikshit Sondhi, Wenke Zhang, Mohit Sharma, and B Aditya
Prakash. Mining e-commerce query relations using customer interaction net-
works. In Proceedings of the 2018 World Wide Web Conference, pages 1805–1814,
2018.

[7] Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolu-
tional networks for semi-supervised learning. In Thirty-Second AAAI Conference
on Arti�cial Intelligence, 2018.

[8] Yu Rong,Wenbing Huang, Tingyang Xu, and JunzhouHuang. Dropedge: Towards
deep graph convolutional networks on node classi�cation. In International
Conference on Learning Representations. https://openreview. net/forum, 2020.

[9] Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad Norouzi, and Geo�rey E
Hinton. Big self-supervisedmodels are strong semi-supervised learners. Advances
in neural information processing systems, 33:22243–22255, 2020.

[10] Chen Cai and Yusu Wang. A note on over-smoothing for graph neural networks.
arXiv preprint arXiv:2006.13318, 2020.

[11] Wenbing Huang, Yu Rong, Tingyang Xu, Fuchun Sun, and Junzhou Huang. Tack-
ling over-smoothing for general graph convolutional networks. arXiv preprint
arXiv:2008.09864, 2020.

[12] Xin Xia, Hongzhi Yin, Junliang Yu, Qinyong Wang, Lizhen Cui, and Xiangliang
Zhang. Self-supervised hypergraph convolutional networks for session-based
recommendation. In Proceedings of the AAAI Conference on Arti�cial Intelligence,
volume 35, pages 4503–4511, 2021.

[13] Andrew Zimdars, David Maxwell Chickering, and Christopher Meek. Using
temporal data for making recommendations. arXiv preprint arXiv:1301.2320, 2013.

[14] Trinh Xuan Tuan and Tu Minh Phuong. 3d convolutional networks for session-
based recommendation with content features. In Proceedings of the eleventh ACM
conference on recommender systems, pages 138–146, 2017.

[15] Wen Wang, Wei Zhang, Shukai Liu, Qi Liu, Bo Zhang, Leyu Lin, and Hongyuan
Zha. Beyond clicks: Modeling multi-relational item graph for session-based
target behavior prediction. In Proceedings of The Web Conference 2020, pages
3056–3062, 2020.

[16] Shu Wu, Yuyuan Tang, Yanqiao Zhu, Liang Wang, Xing Xie, and Tieniu Tan.
Session-based recommendation with graph neural networks. In Proceedings of
the AAAI conference on arti�cial intelligence, volume 33, pages 346–353, 2019.

[17] Jianling Wang, Kaize Ding, Ziwei Zhu, and James Caverlee. Session-based rec-
ommendation with hypergraph attention networks. In Proceedings of the 2021
SIAM International Conference on Data Mining (SDM), pages 82–90. SIAM, 2021.

[18] Mahdi Kherad and Amir Jalaly Bidgoly. Recommendation system using a deep
learning and graph analysis approach. arXiv preprint arXiv:2004.08100, 2020.

[19] Shakila Shaikh, Sheetal Rathi, and Prachi Janrao. Recommendation system in
e-commerce websites: A graph based approached. In 2017 IEEE 7th International
Advance Computing Conference (IACC), pages 931–934. IEEE, 2017.

[20] Rianne van den Berg, Thomas N Kipf, and Max Welling. Graph convolutional
matrix completion. arXiv preprint arXiv:1706.02263, 2017.

[21] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. Neural
graph collaborative �ltering. In Proceedings of the 42nd international ACM SIGIR
conference on Research and development in Information Retrieval, pages 165–174,
2019.

[22] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin.
Graph neural networks for social recommendation. In The world wide web
conference, pages 417–426, 2019.

[23] Yifan Feng, Haoxuan You, Zizhao Zhang, Rongrong Ji, and Yue Gao. Hypergraph
neural networks. In Proceedings of the AAAI Conference on Arti�cial Intelligence,
volume 33, pages 3558–3565, 2019.

[24] Yue Gao, Zizhao Zhang, Haojie Lin, Xibin Zhao, Shaoyi Du, and Changqing
Zou. Hypergraph learning: Methods and practices. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2020.

[25] Jianling Wang, Kaize Ding, Liangjie Hong, Huan Liu, and James Caverlee. Next-
item recommendation with sequential hypergraphs. In Proceedings of the 43rd
international ACM SIGIR conference on research and development in information
retrieval, pages 1101–1110, 2020.

[26] Shuyi Ji, Yifan Feng, Rongrong Ji, Xibin Zhao, Wanwan Tang, and Yue Gao.
Dual channel hypergraph collaborative �ltering. In Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, pages
2020–2029, 2020.

[27] Junliang Yu, Hongzhi Yin, Jundong Li, Qinyong Wang, Nguyen Quoc Viet Hung,
and Xiangliang Zhang. Self-supervised multi-channel hypergraph convolutional
network for social recommendation. In Proceedings of the Web Conference 2021,
pages 413–424, 2021.

[28] Aaron Van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with
contrastive predictive coding. arXiv e-prints, pages arXiv–1807, 2018.

[29] Jizong Peng, Ping Wang, Christian Desrosiers, and Marco Pedersoli. Self-paced
contrastive learning for semi-supervised medical image segmentation with meta-
labels. Advances in Neural Information Processing Systems, 34, 2021.

[30] Hannan Cao, Wenmian Yang, and Hwee Tou Ng. Grammatical error correc-
tion with contrastive learning in low error density domains. In Findings of the
Association for Computational Linguistics: EMNLP 2021, pages 4867–4874, 2021.

[31] Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding,
Kuansan Wang, and Jie Tang. Gcc: Graph contrastive coding for graph neural
network pre-training. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pages 1150–1160, 2020.

[32] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and
Yang Shen. Graph contrastive learning with augmentations. Advances in Neural
Information Processing Systems, 33:5812–5823, 2020.

[33] Lianghao Xia, Chao Huang, Yong Xu, Jiashu Zhao, Dawei Yin, and Jimmy Xi-
angji Huang. Hypergraph contrastive collaborative �ltering. arXiv preprint
arXiv:2204.12200, 2022.

[34] Hai-Bo Hu and Xiao-Fan Wang. Disassortative mixing in online social networks.
EPL (Europhysics Letters), 86(1):18003, 2009.

[35] Andrei Broder, Ravi Kumar, Farzin Maghoul, Prabhakar Raghavan, Sridhar Ra-
jagopalan, Raymie Stata, Andrew Tomkins, and Janet Wiener. Graph structure
in the web. Computer networks, 33(1-6):309–320, 2000.

[36] Jianan Zhao, Xiao Wang, Chuan Shi, Binbin Hu, Guojie Song, and Yanfang Ye.
Heterogeneous graph structure learning for graph neural networks. In 35th AAAI
Conference on Arti�cial Intelligence (AAAI), 2021.

[37] Xiao Wang, Meiqi Zhu, Deyu Bo, Peng Cui, Chuan Shi, and Jian Pei. Am-gcn:
Adaptive multi-channel graph convolutional networks. In Proceedings of the 26th
ACM SIGKDD International conference on knowledge discovery & data mining,
pages 1243–1253, 2020.

[38] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.
Line: Large-scale information network embedding. In Proceedings of the 24th
international conference on world wide web, pages 1067–1077, 2015.

[39] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques
for recommender systems. Computer, 42(8):30–37, 2009.

[40] Ste�en Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. Factorizing
personalized markov chains for next-basket recommendation. In Proceedings of
the 19th international conference on World wide web, pages 811–820, 2010.

[41] Dawen Liang, Jaan Altosaar, Laurent Charlin, and David M Blei. Factoriza-
tion meets the item embedding: Regularizing matrix factorization with item
co-occurrence. In Proceedings of the 10th ACM conference on recommender sys-
tems, pages 59–66, 2016.

[42] Magdalini Eirinaki, Michalis Vazirgiannis, and Dimitris Kapogiannis. Web path
recommendations based on page ranking and markov models. In Proceedings
of the 7th annual ACM international workshop on Web information and data
management, pages 2–9, 2005.

[43] Nan Wang, Shoujin Wang, Yan Wang, Quan Z Sheng, and Mehmet A Orgun.
Exploiting intra-and inter-session dependencies for session-based recommenda-
tions. World Wide Web, 25(1):425–443, 2022.

[44] LongcanWu, DalingWang, Kaisong Song, Shi Feng, Yifei Zhang, and Ge Yu. Dual-
view hypergraph neural networks for attributed graph learning. Knowledge-Based
Systems, 227:107185, 2021.

[45] Alain Bretto. Hypergraph theory. An introduction. Mathematical Engineering.
Cham: Springer, 2013.

[46] Mark EJ Newman. Mixing patterns in networks. Physical review E, 67(2):026126,
2003.

[47] Yujun Yan, Milad Hashemi, Kevin Swersky, Yaoqing Yang, and Danai Koutra. Two
sides of the same coin: Heterophily and oversmoothing in graph convolutional
neural networks. arXiv preprint arXiv:2102.06462, 2021.

[48] Benjamin Heinzerling and Michael Strube. BPEmb: Tokenization-free Pre-trained
Subword Embeddings in 275 Languages. In Proceedings of the Eleventh Interna-
tional Conference on Language Resources and Evaluation (LREC 2018), Miyazaki,
Japan, May 7-12, 2018 2018. European Language Resources Association (ELRA).

[49] Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple
and deep graph convolutional networks. arXiv preprint arXiv:2007.02133, 2020.

[50] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen
Liu, Michele Catasta, and Jure Leskovec. Open graph benchmark: Datasets for
machine learning on graphs. Advances in neural information processing systems,
33:22118–22133, 2020.

[51] Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. Measuring and
relieving the over-smoothing problem for graph neural networks from the topo-
logical view. In Proceedings of the AAAI Conference on Arti�cial Intelligence,
volume 34, pages 3438–3445, 2020.


	Abstract
	1 Introduction
	2 Related Work
	2.1 Session-Based Recommendation
	2.2 Graphs/Hypergraphs in Recommendation
	2.3 Contrastive Representation Learning
	2.4 Disassortative Mixing

	3 Methodology
	3.1 Notations, Definitions, and Hypergraph Construction
	3.2 Two Challenges in the Query-Item Graph
	3.3 A General DCAH Framework
	3.4 Enhancing DCAH with Self-Supervised Learning and DropEdge

	4 Evaluation
	4.1 Experimental Settings
	4.2 Overall Performance Validation (RQ1)
	4.3 In Depth Analysis of Hypergraph in Alleviating Data Sparsity (RQ2)
	4.4 Effect of SSL and DropEdge in Addressing Over-Smoothing (RQ3)

	5 Conclusions
	References

