
Web-scale Semantic Product Search With Large

Language Models

Aashiq Muhamed1,3,4, Sriram Srinivasan1,3, Choon-Hui Teo1, Qingjun Cui1,
Belinda Zeng2, Trishul Chilimbi2, and SVN Vishwanathan1

1 Amazon, Palo Alto, California, USA
2 Amazon, Seattle, Washington, USA

3 Equal contribution
4 Corresponding author

{muhaaash, srirs, choonhui, qingjunc, zengb, trishulc, vishy}@amazon.com

Abstract. Dense embedding-based semantic matching is widely used
in e-commerce product search to address the shortcomings of lexical
matching such as sensitivity to spelling variants. The recent advances
in BERT-like language model encoders, have however, not found their
way to realtime search due to the strict inference latency requirement im-
posed on e-commerce websites. While bi-encoder BERT architectures en-
able fast approximate nearest neighbor search, training them effectively
on query-product data remains a challenge due to training instabilities
and the persistent generalization gap with cross-encoders. In this work,
we propose a four-stage training procedure to leverage large BERT-like
models for product search while preserving low inference latency. We in-
troduce query-product interaction pre-finetuning to effectively pretrain
BERT bi-encoders for matching and improve generalization. Through
offline experiments on an e-commerce product dataset, we show that a
distilled small BERT-based model (75M params) trained using our ap-
proach improves the search relevance metric by up to 23% over a baseline
DSSM-based model with similar inference latency. The small model only
suffers a 3% drop in relevance metric compared to the 20x larger teacher.
We also show using online A/B tests at scale, that our approach improves
over the production model in exact and substitute products retrieved.

Keywords: Matching · Retrieval · Search · Pretrained Language Models

1 Introduction

An e-commerce product search engine typically serves queries in two stages—
matching and ranking, for efficiency and latency reasons. In the matching stage,
a query is processed and matched against hundreds of millions of products to
retrieve thousands of products that are relevant to the query. In the subsequent
ranking stage, the retrieved products are scored against one or more objectives
and then sorted to increase the likelihood of satisfying the customer query in
the top positions. Matching is therefore a critical first step towards a delight-
ful customer experience in terms of search latency and relevance, and the focus



2 A. Muhamed et al.

of this paper. Lexical matching using an inverted index [1] has been the in-
dustry standard approach for e-commerce retrieval applications. This type of
matching retrieves products that have one or more query keywords appear in
their textual attributes such as title and description. Lexical matching is favor-
able because of its simplicity, explainability, low latency, and ability to scale
to catalogs with billions of products. Despite the advantages, lexical matching
has several shortcomings such as sensitivity to spelling variants (e.g. “grey” vs
“gray”) or mistakes (e.g. “sheos” instead of “shoes”), proneness to vocabulary

mismatch (e.g. hypernyms, synonyms), and lack of semantic understanding (e.g.
“latex free examination gloves” does not match the intent of “latex examination
gloves”). These issues are largely caused by the underlying term-based distribu-
tional representation for query and product that fails to capture the fine-grained
relationship between terms. Researchers and practitioners typically resort to
query expansion techniques to address these issues.

Dense embedding based semantic matching [2] has been shown to significantly
alleviate the shortcomings of lexical matching due to its distributed represen-
tation that admits granular proximity between the terms of a query-product
pair in low dimensional vector space [3]. To fulfill the low latency requirement,
these semantic matching models are predominantly shallow and use a bi-encoder
architecture. Bi-encoders have separate encoders for generating query and prod-
uct embeddings and use cosine similarity to define the proximity of queries and
products. Such an architecture allows product embeddings to be indexed offline
for fast approximate nearest neighbor (ANN) search [4] with the query embed-
ding generated in realtime. Recently, BERT-based models [5] have advanced the
state-of-the-art in natural language processing but due to latency considerations,
their use in online e-commerce information retrieval is largely limited to the bi-
encoder architecture [6,7,8] which does not benefit from the early interaction
between the query and product representations.

In this work, we propose a multi-stage training procedure to train a small
BERT-based matching model for online inference that leverages a large pre-
trained BERT-based matching model. A large BERT encoder (750M parameters)
is first pretrained with the masked language modeling (MLM) objective on the
product catalog data (details in Section 2.1), we refer to the trained model as ds-
bert. Next, the ds-bert model is pre-finetuned using our novel query-product
interaction pre-finetuning (QPI) task (see Section 2.2), the trained model is
referred to as qpi-bert. We find that interaction pre-finetuning greatly improves
training stability of bi-encoders downstream as well as significantly improves
generalization. qpi-bert is then cloned into a bi-encoder model architecture
and finetuned with query-product purchase signal, we refer to this model as
qpi-bert-ft(see Section 2.3). Finally, a smaller qpi-bert bi-encoder student
model (75M parameters) is distilled from the qpi-bert-ft teacher by matching
the cosine similarity score on the query-product pairs used for finetuning (see
Section 2.4), we refer to this model as small-qpi-bert-dis.

Through our offline experiments on a large e-commerce dataset, we show that
the small-qpi-bert-dis model (75M) suffers only a 3% drop in search relevance



Web-scale Semantic Product Search With Large Language Models 3

metric, compared to the qpi-bert model with 20x its number of parameters
(1.5B). This small-qpi-bert-dis model improves search relevance by 23%, over
a baseline DSSM-based matching model [2] with similar number of parameters
and inference latency. Using an online A/B test we also show that the small-

qpi-bert-dis model outperforms the production model with 2% lift in both
relevance and sales metrics.

Our work is closely related to the literature on semantic matching with deep
learning. Some of the initial pre-BERT works include the Deep Semantic Sim-
ilarity Model (DSSM) [2] , that constructs vector representations for queries
and documents using a feedforward network and uses cosine similarity as the
scoring function. DSSM-based models are widely used for real-time matching at
web-scale [9,10]. This was later specialized for online product matching [3]. Post-
BERT techniques leverage Pretrained Language Models (PLMs), such as BERT
[5] to construct bi-encoders for matching tasks [8,11,12]. These techniques have
broadly been applied to question-answering where the question and answer are
from similar domains and interaction pre-finetuning is less essential. A recent
work [13], proposes a multi-stage semantic matching training pipeline for web
retrieval. However, unlike our approach, their focus is on deploying an ERNIE
model (220M), while we study how large bi-encoders (1.5B) can be compressed
to much smaller bi-encoders (70M) at web-scale using interaction pre-finetuning.
In summary, the key contributions of this work are:

– We propose a multi-stage training procedure to effectively train a small
BERT-based matching model for online inference from a much larger model
(750 million to 1.5 billion parameters).

– We introduce a novel pre-finetuning task where a span masking and field
permutation equivariant objective is used on joint query-product input text
to help align the query and product representations. This task helps stabilize
training and improve generalization of bi-encoders.

– We show using offline and online experiments at scale on an e-commerce
website, that the proposed approach helps the small BERT small-qpi-bert-

dis model significantly outperform both a DSSM-based model (by 23%) in
offline experiments and a production model in an online A/B test.

2 Methodology

In this section we describe our proposed four-stage training paradigm that con-
sists of 1) domain-specific pretraining, 2) query-product interaction prefinetun-
ing, 3) finetuning for retrieval, and 4) knowledge distillation to a smaller model.
In the first three stages, we train a large BERT model for product matching
and in the final stage we distill this knowledge to a smaller model that can be
deployed efficiently in production (See Figure 1).

2.1 Domain-Specific Pretraining

In the first stage of training, we pretrain a large BERT model on a domain
specific dataset for product matching. The language used to describe products



4 A. Muhamed et al.

(a) Stage 1:
BERT model is
pretrained to
produce ds-bert

(b) Stage 2:
ds-bert is pre-
finetuned to
produce qpi-bert

(c) Stage 3: Bi-encoder
qpi-bert is trained
with three-part hinge
loss to produce qpi-

bert-ft

(d) Stage 4:
qpi-bert-ft is dis-
tilled to produce
small-qpi-bert-

dis

Fig. 1: This figure shows the four stages involved in training an effective deploy-
able model for semantic matching.

(catalog fields) in the e-commerce domain significantly differs from the language
used on the larger web. Product titles and descriptions use a subset of the entire
vocabulary, are often structured to follow a specific pattern, and in general have
a different distribution from the sources that publicly available language models
are trained on. Therefore, using an off-the-shelf pretrained BERT-based model
does not perform well when finetuned for the product matching task.

Instead of using an off-the-shelf pretrained BERT model, we construct a BPE
vocabulary [14] from the catalog corpus comprising of billions of products in e-
commerce domain. We then pretrain the model on text from the catalog, and use
all of the catalog text fields such as title and description of products available
by concatenating them along with their field names. Our pretraining objective
is the standard masked-language-modeling (MLM) loss [5,15,16]. We refer to the
model trained with this strategy as the ds-bert model (See Figure 1a).

2.2 Query-Product Interaction Pre-finetuning

Bi-encoders are preferred over cross-encoder models with full interaction for
matching due to their efficiency and feasibility at runtime. Bi-encoders are how-
ever notoriously difficult to train on query-product pairs due to training instabil-
ities arising from gradient variance between the two inputs. Losing the capability
to explicitly model the interaction between queries and products also results in
worse generalization than the cross-encoder.

In the second stage of training we propose a novel self-supervised approach
to incorporate query-product interaction in the large encoder which is critical to
improving the performance on the product matching task. We use query-product
paired data to help the encoder learn the relationship between a query and a
product using full cross-attention. To construct such a dataset, we first identify
query-product pairs that share a relevant semantic relationship, for example,



Web-scale Semantic Product Search With Large Language Models 5

all products purchased for a given query can be considered relevant or query-
product pairs can be manually labeled for relevance. In this paper, the dataset
is constructed such that the query-product pairs are semantically relevant with
a high probability α > 0.8. The pre-finetuning dataset size (a few million exam-
ples) is much smaller than the pretraining dataset (a billion examples).

To perform pre-finetuning, we perform span MLM on the concatenated query
and product text with a ”[SEP]” token between them. At each iteration, we select
spans from either the query text or product text (never both) to mask tokens.
We sample span length (number of words) from a geometric distribution, till a
predetermined percentage of tokens have been masked. The start of the span
is uniformly sampled within the query or the product. During training we also
observed that permuting the fields within the query and product, a form of field
permutation equivariant training, also helped the model generalize better. We
refer to the model trained with this strategy as qpi-bertmodel (See Figure
1b). Pre-finetuning with self-supervision on semantically relevant paired dataset
boosts generalization for matching when a large noisy training set is available.
This differs from previous works that use supervision on manually labeled data.

2.3 Finetuning For Matching

The third stage of training is to finetune the large teacher encoder qpi-bert

model in a bi-encoder setting for matching. We train a bi-encoder teacher as
opposed to a cross-encoder teacher for retrieval as the extreme inefficiency in
generating predictions for evaluation and slow training convergence rate makes
it impractical to train cross-encoders for web-scale data and large models.

Let us denote the qpi-bert model as M , query encoder as Mq, and product
encoder as Mp, where the weights between query encoder and product encoder
are shared. In our experiments sharing weights performed comparably to inde-
pendently training them. For any query-product pair Q and P as inputs, we first
generate the embedding Qemb for query Q using Mq and embedding Pemb for
product P usingMp using their ”[CLS]” token representation. A cosine similarity
score sQ,P = cos(Qemb, Pemb) is used to compute relevance between them.

We train the bi-encoder using a three-part hinge loss. This loss requires the
ground-truth data (yQ,P ) to be labeled with one of three possible values referred
to as positive (1), hard negative (0) and random negative (−1). We use the
purchased products for a given query as positive and any product uniformly
sampled from the catalog as random negative. Identifying hard negatives is non-
trivial [17,12], and in this work we choose a simple yet effective approach [3],
where for a given query, all products that were shown to the user but did not
receive any interaction is a hard negative. The loss takes the following form:

lossQ,P (yQ,P , sQ,P ) =



















max(δpos − sQ,P , 0), if yQ,P = 1.

max(δ−hn − sQ,P , 0) if yQ,P = 0.

+max(sQ,P − δ+hn, 0),

max(sQ,P − δrn, 0), if yQ,P = −1.

(1)



6 A. Muhamed et al.

where δpos and δ−hn are the lower thresholds for the positive and hard negative
data scores respectively and δ+hn and δrn are the upper thresholds for the hard
negative and random negative data scores respectively. We refer to the model
trained with this strategy as the qpi-bert-ft model (see Figure 1c).

2.4 Distillation And Realtime Inference

The final stage of our framework is to distill the knowledge of teacher qpi-bert-
ft to a smaller student bi-encoder BERT model (75M to 150M parameters) that
meets the online latency constraint. We first pretrain and prefinetune the small
model similar to qpi-bert to generate small-qpi-bertmodelM . Then we clone
the encoder to create a query encoder M̃Q and a product encoder M̃P . Unlike
the large model case, for the small model we observe that sharing parameters
between encoders helps improve performance significantly. The query embedding
Q̃emb and product embedding P̃emb for the student model are computed by
averaging all token embeddings in the query Q and product P respectively.
The relevance score for a query-product pair is compute using cosine similarity
i.e, s̃Q,P = cos(Q̃emb, P̃emb). The model is trained by minimizing the distance
between the scores generated by qpi-bert-ft teacher and the model using the
mean squared error (MSE) loss function.

lossQ,P (sQ,P , s̃Q,P ) = (sQ,P − s̃Q,P )
2 (2)

In practice we observed that simple score matching using MSE outperformed
other approaches such as using L2 loss on the embeddings directly, Margin-MSE
[18] with random negatives, or contrastive losses like SimCLR [19] with random
negatives. We refer to the model distilled with this strategy as the small-qpi-

bert-ft model (see Figure 1d). At runtime, for every query entered by the
customer, we compute the query embedding and then retrieve top K products
using ANN search [4]. To serve traffic in realtime, we cache the product embed-
dings and compute only the query embedding online. The retrieved products are
served directly to customers or mixed with other results and re-ranked before
displaying to the customer.

3 Empirical Evaluation

3.1 Experimental Setup

Data We use the following multilingual datasets for different stages of training:
Domain-specific pretraining data: We use ∼1 billion product titles and descrip-
tions from 14 different languages. This data is also used to construct a senten-
cepiece [20] tokenizer with 256K vocab size.
Interaction pre-finetuning data: We use ∼15M query-product pairs from 12 lan-
guages and use weak supervision in the form of rules to label them as relevant
or irrelevant. ∼80% of the pairs are relevant query-product pairs.
Finetuning for matching data: We use ∼330M query-product pairs subsampled



Web-scale Semantic Product Search With Large Language Models 7

from a live e-commerce service to train the model for matching. We maintain
a positive to hard negative to negative ratio of 1:10:11. The pairs are collected
from multiple countries with at least 4 languages. We use a validation dataset to
compute recall that contains 28K queries and 1M products from the subsampled
catalog. Human evaluation (Section 3.1) uses a held-out set of 100 queries.
Models We experiment with several model variants, both small and large sum-
marized in Table 1. All large models we train are based on ds-bert, which is
a multilingual BERT model with 38 layers, 1024 output dimensions and 4096
hidden dimensions. When the parameters for the query and product encoder
are not shared, the model has twice the parameters of the encoder. The small
models we train are multilingual BERT models with 2 layers, 256 output dimen-
sions, and 1024 hidden dimensions. In addition, we use dssm and xlmroberta

as baselines. • xlmroberta: Publicly available XLMRoberta [21] model which
is finetuned for matching as described in Section 2.3. • dssm: Bi-encoder model
with a shared embedding layer (output dimension of 256) followed by batch
norm and averaged token embedding to represent the query and product [3]. To
ensure effective use of vocabulary for DSSM, we create a different sentencepiece
model with 300k tokens using the matching training data.

Models Params ED ET DS PT QPI PFT Shared Dist

Large Models

xlmroberta 1.1B 1024 CLS N N N N

ds-bert 1.5B 1024 CLS Y N N N

qpi-bert-ft 1.5B 1024 CLS Y Y N N

qpi-bert-ft* 1.5B 1024 CLS Y Y5 N N

qpi-bert-ft-sh 750M 1024 AVG Y Y Y N

Smaller Models

small-qpi-bert-ft 150M 256 CLS Y Y N N

small-qpi-bert-ft-avg 150M 256 AVG Y Y N N

small-qpi-bert-ft-sh 75M 256 CLS Y Y Y N

small-qpi-bert-ft-sh-avg 75M 256 AVG Y Y Y N

small-qpi-bert-dis 75M 256 AVG Y Y Y Y

dssm 75M 256 AVG N N Y N

Table 1: Bi-encoder model variants. Differences are number of parameters
(Params), embedding dimensionality (ED), embedding type (ET), domain-
specific pretraining (DS PT), QPI prefinetuning (QPI PFT), whether encoders
share parameters (Shared), whether model is distilled from qpi-bert-ft (Dis).

Metrics R@100 : This is the average purchase recall computed on the validation
data for the top 100 products retrieved.
Relevance Metrics: To understand the true improvement in the the quality of
matches retrieved by the model, we use Toloka (toloka.yandex.com) to label the

5 Classification objective instead of span masking objective on pre-finetuning data.



8 A. Muhamed et al.

results produced by our models. For every query we retrieve 100 results and ask
the annotators to label them as exact match, substitute, or other. We report the
average percentage of exact (E@100). substitute (S@100), and other (O@100).
We use E@100 + S@100 (E+S) to measure semantic improvement in the model.
Training We use Deepspeed (deepspeed.ai) and PyTorch for training models on
AWS P3DN instances. We used LANS optimizer [22] with learning rate between
1e−4 and 1e−6 based on the model and for all models we use a batch size of
8192. During pre-finetuning, we use validation MLM accuracy to perform early
stopping and for finetuning we use validation recall for stopping. When using the
three-part hinge-loss in Equation 1, δpos = 0.9, δ+hn = 0.55 and δrn = δ−hn = 0.2.

3.2 Offline And Online Results

Does our training strategy help improve semantic matching perfor-

mance offline? For large models, we compare qpi-bert-ft with xlmroberta,
ds-bert, and qpi-bert-ft*, and for small models, we compare small-qpi-

bert-ft small-qpi-bert-ft-sh with dssm (Table 2). a) qpi-bert outperforms
other approaches both in R@100 and E+S. Among large models, the performance
of ds-bert is better than xlmroberta and qpi-bert-ft* is better than ds-

bert. This clearly indicates progressive improvement with the different stages in
our approach. b) We observe is that dssm outperforms xlmroberta in all met-
rics indicating a vocabulary and domain mismatch between the catalog data and
web data. Domain-specific pretraining is essential to performance when training
the large models. c) We see that qpi-bert-ft significantly outperforms qpi-

bert-ft* in all metrics, validating the importance of interaction pre-finetuning
over mere supervision alone for matching. d) For small models, we observe that
the performance of small-qpi-bert-ft is very similar to dssm, with small-qpi-

bert-ft showing ∼45% relative lift in S@100 but, ∼8% relative drop in E@100,
∼4% relative lift in E+S, and ∼1% relative drop in R@100. When sharing pa-
rameters between the query and product encoder, and averaging embeddings,
small-qpi-bert-ft-sh-avg outperforms dssm by ∼38% relative lift in S@100,
∼2% relative lift in E@100, ∼10% relative lift in E+S, and ∼2% relative lift in
R@100. The results indicate that our strategy helps improve the performance
overall and the improvements are higher for larger models (∼23% relative lift in
E+S over dssm). This reinforces our proposed approach: train a large model and
distill the knowledge to a smaller model, instead of directly training a smaller
model.

Can distillation preserve large model performance? Given the large
improvement in matching metrics for large models, we would ideally like to retain
this improvement in smaller models using distillation. We compare small-qpi-

bert-dis with qpi-bert-ft (Table 2) and observe a ∼3% relative drop in E+S
and R@100. This shows that while there is small gap, it is possible to transfer
most of the information from a 1.5B parameter large qpi-bert-ft model to a
20x smaller small-qpi-bert-dis model (75M parameter) using our approach.

Does sharing parameters in the bi-encoder have an impact on re-

trieval task performance? To understand the effect of sharing parameters



Web-scale Semantic Product Search With Large Language Models 9

between query and product encoders in the bi-encoder setting, we compare
qpi-bert-ft-sh with qpi-bert-ft among the large models and small-qpi-

bert-ft-shwith small-qpi-bert-ft, and small-qpi-bert-ft-sh-avg with
small-qpi-bert-ft-avg among the small models (Table 2). We observe that
sharing encoders has almost no impact on the performance of large models and
the maximum relative drop in E+S and recall is ∼1% with qpi-bert-ft-sh

winning marginally. However, in the smaller models we observe that sharing pa-
rameters gives a large boost in performance with a relative lift of upto ∼32% in
the E+S metric and ∼60% in R@100. When the model size is large enough, it is
capable of learning independent encoders for both inputs. But, when the model
is small, the model benefits from sharing parameters.

Models R@100 E@100 S@100 O@100 E+S

Large Models

xlmroberta 68.43 29.52 17.46 53.02 46.98

ds-bert 73.98 43.17 17.55 39.28 60.72

qpi-bert-ft 82.2 50.36 20.5 29.14 70.86

qpi-bert-ft* 75.6 48.35 19.66 31.99 68.01

qpi-bert-ft-sh 83.35 51.08 19.81 29.11 70.89

Smaller Models

small-qpi-bert-ft 77.06 40.28 18.16 41.56 58.44

small-qpi-bert-ft-avg 50.84 33.63 13 53.37 46.63

small-qpi-bert-ft-sh 79.3 43.98 18.52 37.5 62.5

small-qpi-bert-ft-sh-avg 80.17 44.45 17.33 38.22 61.78

small-qpi-bert-dis 80 48.04 20.78 31.18 68.82

dssm 78.1 43.56 12.49 43.95 56.05

Table 2: Offline metrics of models on a multi-lingual e-commerce dataset

How does our approach improve over a non-BERT-based model?

To visualize the difference in matching quality between our BERT-based model
and DSSM, we look at results for two queries, with DSSM retrieving more rele-
vant products on one query and vice-versa on the other (Figure 2). We observe
that for query ”sailor ink” qpi-bert-ft performs better as all results are rele-
vant products. For this query, dssm behaves like a lexical matcher and fetches
results for both ”sailor” and ”ink”. For query ”omron sale bp monitor machine”,
dssm retrieves all relevant matches. qpi-bert-ft however, retrieves an irrele-
vant product (a fitness watch). While irrelevant, it still falls into the product type
of ”personal health” implying an error in semantic generalization. The signifi-
cantly higher increase in S@100 compared to E@100 indicates that qpi-bert-ft
is a better semantic model as the representations must incorporate high-level
concepts to match substitutes, that token-level exact matches cannot achieve.

What is the latency improvement of the smaller BERT model com-

pared to the large model? We have seen earlier that the large model can be



10 A. Muhamed et al.

(a) Query: ”sailor

ink”; Method:
dssm.

(b) Query: ”sailor

ink”; Method: qpi-

bert-ft.

(c) Query: ”omron

sale bp moni-

tor machine”;
Method: dssm.

(d) Query: ”om-

ron sale bp

monitor ma-

chine”; Method:
qpi-bert-ft.

Fig. 2: Top 6 results obtained by dssm and qpi-bert-ft for queries ”sailor ink”
and ”omron sale bp monitor machine”.

effectively compressed to a 20x smaller model that incurs much lower inference
latency. We compare the inference latencies of our models while generating query
embeddings which is representative of realtime latency as the product embed-
dings are generated offline and indexed for ANN. We ignore the ANN latency as
modern ANN search can be computed effectively in realtime (∼1ms) [4]. Figure
3 shows the time it takes to compute query embedding (inference) for different
query lengths (query length computed as number of tokens after tokenization)
on an r5.4xlarge AWS instance. As expected, dssm has the lowest inference time
and qpi-bert has the largest. Both small-qpi-bert and dssm have embedding
generation time of under 1ms upto 32 tokens making it feasible to serve real-
time traffic. small-qpi-bert reduces the latency time by ∼60x compared to
qpi-bert with a relevance metric performance drop of only ∼3%.

Fig. 3: Inference time for qpi-bert, small-qpi-bert, and dssm on r5.4xlarge



Web-scale Semantic Product Search With Large Language Models 11

PS Units E@16 S@16 E+S@16 SR
Latency
P99

+2.07% +1.47% -1.19% +3.37% +2.18% -16.9% +4ms

Table 3: A/B test results for small-qpi-bert-dis rel. to production system.

How well does the approach perform online? To measure the impact
of our approach online, we experiment with small-qpi-bert-dis in a multi-
lingual large e-commerce service. The service augments matching results from
several sources like lexical matchers, semantic matchers, upstream machine learn-
ing models, and advertised products. We replace only the production semantic
matcher with our small-qpi-bert-dis and perform an A/B test. We measure
both customer engagement metrics and relevance quality metrics. For customer
engagement metrics, we look at the change in number of units purchased and the
amount of product sales (PS). For quality metric, we look at the change in user
evaluated E@16, S@16, E+S@16 and sparse results (SR) which is the percent-
age of queries with less than 16 products retrieved. We observe (Table 3) that
our approach significantly improves over the production semantic matcher and
lead to a significant drop in SR. The reduction in E@16 and increase in S@16
suggests that our approach is learning latent semantic meaning to increase sub-
stitutes displayed to customers. We also observe that our model does not have
a significant impact on latency (∼4ms) and can be used at runtime.

4 Conclusion

In this work we develop a four-stage training paradigm to train an effective BERT
model that can be deployed online to improve product matching. We introduce
a new pre-finetuning task that incorporates the interaction between queries and
products prior to training for retrieval which we show is critical to improving
performance. Using a simple yet effective approach, we distill a large model
to a smaller model and show through offline and online experiments that our
approach can significantly improve customer experience. As future work, it would
be interesting to incorporate other structured data from the e-commerce service
to enhance representation learning, such as brand and product dimensions, as
well as customer interaction data such as reviews.
AcknowledgementWe would like to thank Priyanka, Mutasem, Huajun, Jaspreet,
Dhivya, Giovanni, Hemant, Anton, Tina, and RJ from Amazon Search.

References

1. H. Schütze, C. D. Manning, and P. Raghavan, Introduction to information retrieval.
Cambridge University Press Cambridge, 2008.

2. P.-S. Huang, X. He, J. Gao, L. Deng, A. Acero, and L. P. Heck, “Learning deep
structured semantic models for web search using clickthrough data.,” in CIKM,
2013.



12 A. Muhamed et al.

3. P. Nigam, Y. Song, V. Mohan, V. Lakshman, W. A. Ding, A. Shingavi, C. H. Teo,
H. Gu, and B. Yin, “Semantic product search,” in SIGKDD, 2019.

4. Y. A. Malkov and D. A. Yashunin, “Efficient and robust approximate nearest neigh-
bor search using hierarchical navigable small world graphs,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 42, 2018.

5. J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep
bidirectional transformers for language understanding,” in NACCL, 2019.

6. N. Reimers and I. Gurevych, “Sentence-BERT: Sentence embeddings using Siamese
BERT-networks,” in EMNLP-IJCNLP, 2019.

7. O. Khattab and M. Zaharia, “Colbert: Efficient and effective passage search via
contextualized late interaction over bert,” in SIGIR, 2020.

8. W. Lu, J. Jiao, and R. Zhang, “Twinbert: Distilling knowledge to twin-structured
bert models for efficient retrieval,” ArXiv, vol. abs/2002.06275, 2020.

9. J.-T. Huang, A. Sharma, S. Sun, L. Xia, D. Zhang, P. Pronin, J. Padmanabhan,
G. Ottaviano, and L. Yang, “Embedding-based retrieval in facebook search,” in
SIGKDD, 2020.

10. S. Li, F. Lv, T. Jin, G. Lin, K. Yang, X. Zeng, X.-M. Wu, and Q. Ma, “Embedding-
based product retrieval in taobao search,” in SIGKDD, 2021.

11. V. Karpukhin, B. Oguz, S. Min, P. Lewis, L. Wu, S. Edunov, D. Chen, and W.-t.
Yih, “Dense passage retrieval for open-domain question answering,” in EMNLP,
2020.

12. L. Xiong, C. Xiong, Y. Li, K.-F. Tang, J. Liu, P. N. Bennett, J. Ahmed, and
A. Overwijk, “Approximate nearest neighbor negative contrastive learning for
dense text retrieval,” in ICLR, 2021.

13. Y. Liu, G. Huang, J. Liu, W. Lu, S. Cheng, Y. Li, D. Shi, S. Wang, Z. Cheng, and
D. Yin, “Pre-trained language model for web-scale retrieval in baidu search,” in
SIGKDD, 2021.

14. R. Sennrich, B. Haddow, and A. Birch, “Neural machine translation of rare words
with subword units,” in Proceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long Papers), (Berlin, Germany),
pp. 1715–1725, Association for Computational Linguistics, Aug. 2016.

15. Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettle-
moyer, and V. Stoyanov, “Roberta: A robustly optimized bert pretraining ap-
proach,” ArXiv, vol. abs/1907.11692, 2019.

16. Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut, “Albert: A
lite bert for self-supervised learning of language representations,” in ICLR, 2020.

17. S. Ji, S. V. N. Vishwanathan, N. Satish, M. J. Anderson, and P. Dubey, “Blackout:
Speeding up recurrent neural network language models with very large vocabular-
ies,” in ICLR, 2016.

18. S. Hofstätter, S. Althammer, M. Schröder, M. Sertkan, and A. Hanbury, “Improv-
ing efficient neural ranking models with cross-architecture knowledge distillation,”
ArXiv, vol. abs/2010.02666, 2020.

19. T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework for con-
trastive learning of visual representations,” in ICML, 2020.

20. T. Kudo and J. Richardson, “Sentencepiece: A simple and language independent
subword tokenizer and detokenizer for neural text processing,” in EMNLP, 2018.

21. A. Conneau, K. Khandelwal, N. Goyal, V. Chaudhary, G. Wenzek, F. Guzmán,
E. Grave, M. Ott, L. Zettlemoyer, and V. Stoyanov, “Unsupervised cross-lingual
representation learning at scale,” in ACL, 2020.

22. S. Zheng, H. Lin, S. Zha, and M. Li, “Accelerated large batch optimization of bert
pretraining in 54 minutes,” ArXiv, vol. abs/2006.13484, 2020.


	Web-scale Semantic Product Search With Large Language Models

