
Multi-Objective Ranking to Boost Navigational Suggestions in
eCommerce AutoComplete

Sonali Singh
ssonl@amazon.com

Amazon

Sachin Farfade
sfarfade@amazon.com

Amazon

Prakash Mandayam Comar
prakasc@amazon.com

Amazon

ABSTRACT

Query AutoComplete (QAC) helps customers complete their search

queries quickly by suggesting completed queries. QAC on eCom-

merce sites usually employ Learning to Rank (LTR) approaches

based on customer behaviour signals such as clicks and conversion

rates to optimize business metrics. However, they do not exclusively

optimize for the quality of suggested queries which results in lack

of navigational suggestions like product categories and attributes,

e.g., "sports shoes" and "white shoes" for query "shoes". We propose

to improve the quality of query suggestions by introducing navi-

gational suggestions without impacting the business metrics. For

this purpose, we augment the customer behaviour (CB) based ob-

jective with Query-Quality (QQ) objective and assemble them with

trainable mixture weights to de�ne multi-objective optimization

function. We propose to optimize this multi-objective function by

implementing ALMO algorithm to obtain a model robust against

any mixture weight. We show that this formulation improves query

relevance on an eCommerce QAC dataset by at least 13% over the

baseline Deep Pairwise LTR (DeepPLTR) with minimal impact on

MRR and results in a lift of 0.26% in GMV in an online A/B test. We

also evaluated our approach on public search logs datasets and got

improvement in query relevance by using query coherence as QQ

objective.
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• Computing Methodologies→ Ranking; • Information Sys-
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1 INTRODUCTION

QAC helps customers articulate their search queries based on the

query fragment they typed in the search box. For example, if a

customer types “shir” on an eCommerce search, QAC will suggest
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“shirts, shirts for men, shirts latest, etc.”, as possible choices for the

customer to select from. QAC enables the customer to type the

query in minimum keystrokes reducing query typing by 25% [22].

Historically, QAC has been formulated as a ranking problem on

the list of queries typed by customers in the past. This problem is

solved typically using a retrieve-and-rank approach, where, given

a pre�x entered by a customer in the search box, a subset of past

queries that match with the pre�x are retrieved and further ranked

using LTR-based approaches. The ranking strategies optimize on a

combination of customer behaviour signals such as clicks, Gross

Merchandise Value (GMV), searches, etc. QAC is often a di�cult

task due to varied search intents and huge query logs to retrieve

and rank from.

Many customers are not pro�cient in using search navigational

tools to narrow down the selection based on product category or

attribute �ltering. QAC could serve as an important tool to help

customers navigate to the intended product category and attributes

by providing navigational suggestions. Navigational query sugges-

tions educate new customers about the range of selections available

to them along with assisting to narrow down the selection based

on their needs right at the beginning of the shopping journey. The

navigational queries are de�ned as follows: These are keyword sug-

gestions that consist of brand name (Nike, Sony, etc.), product name

(shirt, watches, etc.), gender, category (running shoe, tennis shoe), and

attributes. These queries help customers with broad searches to

funnel down selection based on the product type or attributes like

material, style, etc. In fashion shopping journey, these are important

parameters in purchase decision. In addition to the navigational

needs, typically the search logs contain many poorly formed queries

which impact the overall QAC experience. For example, for pre�x

"sho", search logs contains many noisy completions such as "shoshe

man", "shoe mens", etc. We mitigate this by introducing the notion

of query coherence where we de�ne coherence as the probability

of the �ow of tokens in a query. QAC serves as an early feature in

search and the presence of navigational and coherent suggestions

caters to diverse intents of customers and overall provide higher

quality suggestions.

We propose to improve the QAC experience by increasing the

quality of suggestions in addition to clicks and sales-optimized sug-

gestions. To validate this hypothesis, we propose an ML model that

learns to boost the ranking of high-quality query suggestions. We

do this by introducing an additional QQ objective that optimizes

query relevance and call this modi�ed framework, multi-objective

ranking (MOR). We combine the base objectives using mixture

weights, thereby converting the problem to scalar function opti-

mization [17]. We �rst tune the mixture weights treating them as

hyper-parameter, however, this tends to over-�t to one of the loss

functions [18]. We, therefore, adopt an agnostic approach called

ALMO [11] where we jointly learn mixture weights along with the

https://doi.org/10.1145/3543873.3584649
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model parameters to avoid over�tting on any base objective. MOR

is a generic framework and can be applied to any LTR-based QAC

approach. We apply the MOR approach on DeepPLTR and show

through o�ine experimentation that it improves the query rele-

vance in the eCommerce dataset by 13% and Mean Reciprocal Rank

(MRR) by 2%. We also demonstrate results on AOL public search

dataset, where we report a 2.8× improvement on query relevance

over the baseline DeepPLTR.

2 RELATED WORK

QAC systems are designed with two broad approaches, (a) query re-

trieval and ranking (b) fully generative. Retrieval and Ranking based

approaches were initially heuristic and based on the Most Popular

Completion algorithms [3]. Later, learning-based approaches were

used to rank that leveraged time-sensitive signals and user feed-

back signals [7, 16]. Generative approaches use either heuristics

(templates, nn grams, etc.) [4, 24] or generative Neural LM [19, 25]

to synthesize full suggestions. More details are in survey [8].

Our work focuses on improving the quality of suggestions in

QAC without losing on query clicks and downstream sales in the

eCommerce space. [15] studies importance of QAC ranking quality

on user interaction patterns. We leverage popular learning to rank

objective functions [6, 9, 10] and modify them to boost high-quality

suggestions. Research by Jian et al 2010 [5] studies query-dependent

loss function where they jointly learn ranking along with query

categorization. They study ranking for three query categories -:

navigational, informational, and transactional queries. Some groups

have studied multi-objective optimization for catering to many

notions of query relevance simultaneously. [23] studies combining

multiple relevances into single graded relevance. [12] show how

the correlations between multiple facets of relevance a�ect multi-

criteria ranking. We �rst assign a relevance score to each query

that re�ects how navigational or coherent the query is. We further

build an ML-based approach, that uses these scores and learns to

rank relevant suggestions higher using multi-objective ranking. We

adopt the ALMO algorithm [11] where instead of �xed mixture

weights for each ranking objective, the weights are learnable. This

optimizes the net loss for any combination of mixture weights,

which includes the worst combination of mixture weights and

hence is risk-averse.

3 DEEPPLTR MODEL

In this work, we adopt DeepPLTR model [26] as our baseline QAC

approach. The model is an NN-based ranker that optimizes cus-

tomer behaviour using a pairwise loss function that learns to rank

an accepted (clicked or fully typed) keyword higher than the re-

jected (non-clicked) keyword. Within a session, for each keystroke,

the accepted keyword (labeled as positive ✓) is sampled and paired

with all the rejected keywords (labeled as negative X). The posi-

tive and the negative keywords are featurized and given as input

to a Siamese Neural Network with a pairwise cross-entropy loss

function as the head. Each keyword pair in a session is assigned a

weight as per the optimization criterion. To optimize for customer

behaviour, it is set as a number proportional to GMV generated

from clicking on the positive keyword of the pair.

For a given pre�x ? , let : denote a keyword that completes ? and

x
?

:
∈ R3 denote feature vector that summarizes the relationship

between ? and : . Let 5 : R3 → R denote an acceptance function

that maps G
?

:
to a score that re�ects the user’s a�nity of accepting

the recommended keyword : towards completing the pre�x ? ,

such that it results in conversion. Let :+ and :− denote positive

and negatively labeled keywords that complete the pre�x ? and (

denote all such keyword pairs. To learn 5 , we optimize CB objective

using a pairwise loss function !�� : R3 × R3 → R that takes as

input a keyword pair (:+,:− ) such that !�� is minimized if 5 assigns

a higher score to :+ compared to :− . Let G
?

:+
and G

?

:−
denote the

features of pre�x keyword tuple (p,:+) and (p,:−) respectively. A:+
and A:− denote the rank or position of:+ and:− respectively shown

to the customer in the past sessions. An acceptance function 5 is

constructed such that 5:+ = 5 (G
?

:+
) > 5 (G

?

:−
) = 5:− by minimizing

following pairwise loss:

!�� =

1

|( |

∑

(:+,:−)∈(

F:+

[
;>6(1 + 4 (5:−−5:+ ) ) ∗ |Δ= |

]
(1)

where Δ= =
1

;>6 (1+A:+ )
− 1

;>6 (1+A:− )
denote the di�erence in recip-

rocal rank of the positive and negative keywords. The term |Δ= |

ampli�es loss for keyword pairs separated by a higher margin in

the ranked list, driving to learn on highly relevant keywords ranked

very low in the list. The weightF:+ ensures that the pairwise loss

for sessions where the selected keyword resulted in a non-negative

purchase (GMV) is as low as possible.

4 MULTI-OBJECTIVE AUTOCOMPLETE

We introduce Multi-Objective Ranking (MOR) for QAC that lever-

ages all the advantages of existing LTR- based approaches and, in

addition, improves the quality of query suggestions.

4.1 Multi-Objective Ranking

In MOR, we de�ne a query relevance score which is further used

in a modi�ed LTR objective function explained in subsection 4.1.2

designed to uprank suggestions with a higher query relevance score

while improving on click rate and GMV. Details of query relevance

score and modi�ed objective function are:

4.1.1 �ery Relevance Score: Weassign a pre�x-independent, static

relevance score (denoted as ~A4;
:

) to each query, similar to the no-

tion of query-independent document quality score [20]. This score

measures how relevant the queries are for the QAC task. For eCom-

merce search, we de�ne relevance by measuring how navigational

the query is. While for public search logs, relevance is measured

by the coherence of the sequence of tokens in the query.

(1) Navigational Score: In order to improve query quality, we

recommend queries with more navigational terms without

losing on click and conversion rate. We achieve this by mod-

ifying the objective function described in Section 3 such

that the acceptance function 5 is high for queries with more

navigational terms. For a keyword : , the navigational score

re�ects the extent to which navigational terms are present

in the keyword. This score is independent of the pre�x ?
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and only depends on the terms/words in the keyword : .

We use query understanding tools to identify navigational

words/tokens like brand name, product, gender, category,

or attributes. Navigational score for the query is then calcu-

lated based on navigational terms in each keyword and the

keyword’s popularity.

(2) Query Coherence ScoreWe also extendMOR to public search

logs where we measure relevance in terms of coherence of

suggestions in top slots. We de�ne query coherence score

as how probable the sequence of words in a query is or how

well-formed the query is. As an example, consider two query

completions q1:"tripadvisor.com" and q2:"triple a" for pre�x

"trip". q1 which is a url is more coherent as compared to q2

and hence will be assigned a higher coherence score. We use

a large pre-trained language model (GPT-2) [1] to compute

the coherence score. It is calculated as inverse of perplexity

[2] for a query.

4.1.2 Multi-Objective pairwise loss. We propose a multi-objective

pairwise loss function that jointly models the customer behaviour

(GMV, clicks) and the query relevance score of the recommended

keywords. We retain the CB objective as in eq. 1 and add an extra

QQ objective that boosts the rank for high-quality suggestions.

Keeping the two losses separate and combining them by weights

has the following bene�ts a) easy to implement and measure the

trade-o� varying one loss over the other b) retaining all the advan-

tages of the CB objective.

Joint Regression Learning: One straight-forward approach to

jointly optimize CB and QQ objective is to directly minimize the

mean squared error (MSE) between the predicted acceptance scores

5 and �xed query relevance score ~A4;
:

for each pair as given below:

!A46 =

1

|( |

∑

(:+,:−)∈(

[
_1

{
F:+ ∗ ;>6(1 + 4 (5:−−5:+ ) ) |Δ= |

}

+ _2

{
5:+ − ~A4;

:+

}2 ]
(2)

We consider only the positive keyword while computing MSE

because we want the positive keyword’s predicted score 5:+ to be

closest to its relevance score~A4;
:+

and do not want to do such explicit

minimization for negative keyword. The weights _1 and _2 can ei-

ther be tuned as a hyper-parameter or can be learned using ALMO.

!A46 is computed over a batch of random samples ( . Although the

base losses can be optimized individually without any issues for

their respective task, the combination is tricky to optimize. Par-

ticularly, we found it di�cult to tune the _2 for the above loss as

the MSE term has both high variance and magnitude as compared

to CB-based pairwise loss. The pairwise loss stays in the range of

[0,1] due to two factors a) The cross-entropy loss stays between

[0,1] as the probability of 5:+ > 5:− exceeds 0.5 in most cases b)

The multiplier Δ= stays in [0,1] due to the di�erence between the

reciprocal of rank. The net e�ect results in averaged pairwise loss

for a batch in between [0,1]. This is not the case with MSE loss

where predicted score 5:+ and ~A4;
:+

varies signi�cantly from sample

to sample which makes it harder to �netune _2. Moreover, ALMO

Table 1: Percentage change in MRR and correlation metric of

moDPLTR over DeepPLTR Baseline on eCommerce dataset.

Model MRR Corr(f,~A4;
:

)

moDPLTR

Reg -6.22% +43.42%

Corr -4.14% +32.45%

moDPLTR ALMO

Reg +3.31% +4.82%

Corr +2.48% +13.15%

requires all base losses to be bounded. Due to these disadvantages,

we introduce correlation loss replacing the regression (MSE) loss

for the QQ objective.

Joint Correlation Learning: Instead of direct minimization of

mean square error between 5:+ and ~A4;
:+

for each sample, we maxi-

mize the linear correlation between the acceptance function (f:+)

and the query relevance scores (yA4;
:+

) in a batch. Note that f and y

are vectors of predicted and navigational scores for positive key-

words in a batch. As we need to minimize the net loss, so we add

the negative of this correlation in the existing CB objective. This

choice for the QQ objective, not only bounds the correlation loss

between [-1,1] but also minimizes the variance in loss due to the

correlation computed over a batch (vs. regression loss computed

for each pair). Let �>AA (G,~) denote the correlation between x and

y, and ( be training samples in a batch then,

!2>AA = _1




1

|( |

∑

(:+,:−)∈(

F:+ ∗ ;>6(1 + 4 (5:−−5:+ ) ) |Δ= |




− _2

{
�>AA (f:+, y

A4;
:+

)
}

(3)

Optimizing multi-objective pairwise loss as stated above involves

searching _ over a range [0,1] and �nally training with �xed _ that

gives minimum validation error. This way we may get a solution

that minimizes the ensemble of losses, but may signi�cantly hurt

a loss at the cost of over-optimizing on other losses. The learners’

preference towards an objective can vary over time due to multiple

factors which are not taken care of by �xed weights. Moreover,

its expensive computationally to obtain a Pareto-optimal solution

with multiple base objectives [13, 14]. We, therefore, adopt the

ALMO [11] algorithm that proposes to train a model, robust against

any combination of mixture weights by converting the problem to

min-max optimization. It also guarantees the solution to be Pareto-

optimal.

5 EXPERIMENTAL EVALUATION

We present both o�ine and online evaluations of Multi-Objective

Ranking framework in this section. We apply the MOR framework

on DeepPLTRmodel and call the resultant model as Multi-Objective

DeepPLTR (or moDPLTR).
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5.1 O�line evaluation

5.1.1 Training and Evaluation Samples.

(1) eCommerce Data: We use user-anonymized internal search

logs from an eCommerce site for testing MOR framework,

both in an o�ine and online setting. Customer behaviour

signals such as aggregated clicks, sales, and contextual sig-

nals (based on the user’s environment) are used as features

and navigational scores are employed for query relevance

in the QQ objective. As described in section 3, we sample

positive and negative pairs from search logs and generated

12M samples for training and 2M for validation aggregated

over 2 days. For evaluation, each candidate is scored in the

100 most popular candidates list per pre�x and �nally the

top 10 candidates are selected. Finally, we evaluated on 50k

pre�xes sampled from a day.

(2) AOL Data: To study the impact of MOR on web search

queries, we experiment with publicly accessible AOL search

logs [21]. Similar to [19], training and test data are split

on timestamps. Further, we uniformly sample pre�xes from

these queries and build a mapping of pre�xes to the most

popular query candidate list. For each query in logs, the

searched query is treated as a positive keyword and paired

with other queries (treated as negative keywords) in the most

popular candidate list. Query coherence scores are used as

relevance scores in the QQ objective. 15M data-points are

used for training and 90k pre�xes for evaluation. As features,

we use sentence embedding from pre-trained language mod-

els, aggregated clicks, and cosine similarity of a query with

immediate past query in the same session.

5.1.2 Model Architecture. The architecture of moDPLTR is similar

to DeepPLTR i.e. RankNet-based fully connected Neural Network

with a change in ranking head to accommodate QQ objective. The

detailed architecture and layer size is in �g. 2. For both the positive

and negative sample pair, we see a siamese NN architecture with

weight sharing. Similar to DeepPLTR, we leverage the contextual

layer for contextual features. The ranking scores from the positive

and negative dense layers are given as input to the pairwise loss.

In addition, the ranking score of the positive keyword is also given

as input to QQ objective function for computing correlation or

regression loss. Finally, the pairwise loss for the CB objective and

correlation/regression loss for the QQ objective are assembled with

mixture weights.

5.1.3 O�line Metrics and Results. Tables 1 and 2 compares the per-

formance of moDPLTR against the DeepPLTR model (baseline) on

eCommerce and AOL datasets respectively. For the multi-objective

optimization, the mixture weights are treated as hyper-parameter in

moDPLTR and are learned using the ALMO algorithm in the moD-

PLTR ALMOmodel. We choose two primary metrics for evaluation-

MRR for tracking performance w.r.t CB objective and correlation

metric denoted as Corr(f,~A4;
:

) for measuring query relevance for

QQ objective. In addition, we also use some secondary metrics such

as text and category diversity for measuring diversity of QAC sug-

gestions. Details of metrics used for the evaluation are:

Figure 1: Experience comparing DeepPLTR suggestions with

moDPLTRALMO suggestions on eCommerce data on the left

and AOL data on the right.

Table 2: Results comparing the performance of moDPLTR

with DeepPLTR on AOL data.

Model MRR Corr(f,~A4;
:

)

DeepPLTR 0.485 0.077

moDPLTR

Corr 0.479 (-1.23%) 0.095 (+23.37%)

moDPLTR ALMO

Corr 0.438 (-9.6%) 0.222 (+188.3%)

MORmetric de�nitions Themetrics used for o�ine evaluation

are de�ned as follows:-

(1) MRR: Standard Mean Reciprocal Rank on sessions on all

pre�x p, i.e.,

∑
∀? 1∗''∑

∀? 1
where RR is reciprocal of the rank of

selected query in the ranked list of suggestions. RR is 0 if

selected query is not present in the ranked list.

(2) Correlation Metric: Corr(f,~A4;
:

) denotes mean correlation

over all pre�xes between acceptance scores 5 and query

relevance scores ~A4;
:

for top 10 QAC suggestions.

(3) Text Diversity:It measures the fraction of unique tokens in

the top 10 suggestions averaged over total number of tokens.

The diversity computed for each suggestion is weighted by

its reciprocal rank (RR) to attribute maximum diversity to

top slot suggestion.

(4) Category Div: Category Diversity measures the number of

unique categories in the top 10 suggestions per pre�x.

eCommerce data: For both the versions of moDPLTR model

(without ALMO), we see a signi�cant increase in correlation met-

ric (+38%) with a drop in MRR (-5%) on average. This trade-o�

between MRR and correlation metric is a common challenge in

multi-objective optimization where �xed weights tend to hurt an

objective function while over-optimizing on other components. We

mitigate this by adopting the ALMO algorithm to learn the mixture
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weights. Both versions of moDPLTR ALMO models improve both

on MRR and correlation metric as compared to baseline. Correla-

tion objective performs better on an average than regression due

to challenges with the latter as explained in Section 4.1.2. We also

show results on diversity based metric in table 3. We observe a lift

in both text and category based diversity for all model variations

as compared to baseline.

AOL Data: We report performance on only the correlation loss as

the regression loss for the QQ objective is unsuitable given that

query coherence score is a probability while the acceptance score

is real-valued number. We see a marginal decline in MRR both for

moDPLTR (-1%) and moDPLTR ALMO (-9%), however, the ALMO

variation gives a major improvement in correlation metric(+188%)

vs the �xed weight moDPLTR (+23%).

moDPLTR ALMO (Corr) is chosen as the best-performing model

as it gives the highest improvement in correlation metric with

comparable performance in MRR as compared to the other model

variations. In �g. 1, we compare the QAC performance of DeepPLTR

with moDPLTR ALMO (Corr) on two popular pre�xes ?1="shir"

and ?2="nortan ant". For pre�x ?1, we see more attributes such

as ’casual’ (shirt category), and ’full-sleeves’ (shirt feature) in sug-

gestions from moDPLTR as compared to the baseline. This shows

that correlating acceptance scores with navigational scores helps in

upranking queries with more navigational scores higher. Similarly,

for pre�x ?2 from AOL search logs, we correlate acceptance scores

with query coherence scores. We observe that baseline shows some

misspelled variations of ’antivirus’ such as ’anti virus’, ’anti-virus’

which are replaced by more coherent queries in the moDPLTR

model.

5.2 Online Evaluation (A/B test)

We evaluated the moDPLTR ALMO model with joint correlation

learning on the search bar of a large eCommerce platform search

as part of online A/B test. The model was tested for 4 weeks on 1M

pre�xes, which resulted statistically signi�cant lift of +0.26% in

GMV and a +0.41% lift in shopping items’ diversity.

Figure 2: Model architecture for Multi-Objective Ranking.

Table 3: Percentage change in text and category diversity of

moDPLTR over DeepPLTR Baseline on eCommerce dataset.

Model Txt Div. Cat Div.

moDPLTR

Reg +2.5% +6.98%

Corr +2.85% +8.01%

moDPLTR ALMO

Reg +1.2% +0.18%

Corr +1.5% +2.70%

6 CONCLUSION

We introduce MOR framework that improves the QAC experience

by recommending high-quality suggestions. The proposed ML ap-

proach jointly optimizes query relevance and customer-behaviour

using a multi-objective criterion. For multi-objective training, in-

stead of selecting �xed mixture weights, we proposed to use ALMO

to achieve robustness against any mixture weights. We de�ned

navigational score and query coherence to measure query quality

and showed improvement in query relevance with our approach on

an eCommerce QAC and public search logs datasets with minimal

impact on MRR. Moreover, our approach can we used with any

other LTR model for multi-objective ranking .
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