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ABSTRACT

Recently, gradient basedmulti-objective optimizationmethods have

been developed to �nd models that are aligned with preference

directions (MOO-PD) in machine learning community. Most of the

methods are tuned and tested with multi-task learning problems in

computer vision tasks with deep neural networks. While MOO-PD

is useful in building a model with user speci�ed MOO criteria, there

is no existing work in the learning-to-rank (LTR) applications with

gradient boosted ranking trees (GBRT), which is a popular method

in LTR especially in production systems. Hence, there is no evidence

demonstrating that existing MOO-PD methods work well for LTR.

In this paper, we apply several MOO-PD methods such as the Exact

Pareto Optimal search, etc. to LTR. Further, to quantify model

performance on MOO-PD, we propose a novel model evaluation

metric, which is referred to as themaximumweighted loss. Through

experiments, we reveal common challenges withMOO-PDmethods,

and propose a smoothing technique to address the challenges. The

revised algorithms are shown to signi�cantly improve the empirical

performance on both public and proprietary datasets, indicating

that we now have a realistic way to build MOO-PDmodels in GBRT,

which may bene�t many application use cases in practice.
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1 INTRODUCTION

Learning to Rank (LTR) [17] is a machine learning framework to

learn a scoring function to rank items according to some criteria such

as relevance to a given query. Applications of LTR are diverse and

include web search ranking [7], product search [31], recommender

systems [14], question answering [1], machine translation [11],

etc. As LTR is a prominent framework in information retrieval

(IR), characteristics in IR problems such as multi-dimensionality of

relevance concept [2, 22] are naturally inherited to LTR – the multi-

objective optimization in LTR (MOO-LTR)[30, 32, 33] has emerged

as an important topic for research and applications in production

systems. For example, in web search, there are multiple metrics,

such as click through rate, relevance, dwell-time, etc., all of which
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need to be simultaneously optimized. Further, in product search,

while the primary objectives would be purchase, other factors such

as relevance, surfacing popular brands, etc., are factors needed to

be optimized in the ranking model. Typically, in MOO-LTR, these

objectivees tend to con�ict to each other since there is limited space

for ranking, making optimality in each objective not achievable.

In the presence of con�icts, the multi-objective optimization

(MOO) problem is characterized by Pareto optimality (PO) where

there is no model that is superior to others (i.e., dominate) in all

objectives. In practice, discovery / understanding of trade-o� needs

to be done in model selection of MOO-LTRmodels for online testing

and production deployment. A set of Pareto optimal models is

referred to as Pareto Frontier (PF). The rich history of MOO research

has introduced several ways for specifying a trade-o� [21], e.g.,

setting priorities on objectives (Linear Scalarization, Chebyshev

Scalarization, etc.) or constraining them (e.g., n−Constraintmethod),

that could lead to a PO model.

Recently, building models over the entire PF has become a popu-

lar research topic in the application of multi-task learning (MTL)

[15, 16, 19, 23, 25, 29]. Typically, concepts/methods of MOO are

applied to MTL problems with con�icting tasks, which generate PF

of models over multiple objectives where a task is optimized based

on an objective associated with the task. A popular line of search

is to �nd a model on PF with a vector of preference [15, 19, 23, 25].

Speci�cally, given a positive vector r ∈ R + representing preference

across objectives, we want a model that minimizes each loss func-

tion according to the preference. In the loss function space, this

direction is expressed as a ray of vector r−1 whose component is

inverse of that in r, which is referred to as “r−1-ray”. The problem in

MOO with the speci�ed r is thus denoted as MOO with preference

direction (MOO-PD).

In this paper, we investigate application of various MOO-PD

methods to the MOO-LTR problems. We note that this extension

is not a trivial task for two main reasons: model types and appli-

cations. First, MOO-PD methods are typically tested on computer

vision problems in deep learning frameworks. However, in LTR,

many production systems leverage the gradient boosted ranking

model (GBRT). Second, the ranking dataset / features are typically

structured. Hence, it is unknown if existing methods work well in

MOO-LTR, or require modi�cations to achieve Pareto optimality

that is a requirement to deploy MOO-PD models in production

systems.

Contributions. Our contributions are summarized as follows;

(1) We apply various MOO-PD methods to MOO-LTR problems

with GBRT, and evaluate how the model satis�es the preference

information. (2) We de�ne a metric called maximum weighted loss,

to evaluate the performance of MOO-PD models. (3) We investigate

how to improve existing MOO-PD methods so that the models built

by them can achieve PO.
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2 MOO METHODS IN GBRT AND
EVALUATION METRIC

In this section, we review MOO in GBRT and several existing MOO

methods. GBRT is based on the Gradient Boosted Tree [12], where

gradient vector is used as the target label to build a decision tree,

given task dependent loss function and gradient. In GBRT, we use

ranking loss function such as RankNet [8], LambdaRank [6], etc.,

[4, 5, 26, 28]. Thus, applying MOO in GBRT has been focusing on

how to generate gradient, which is done by considering multiple

cost functions. Given model scores s ∈ R" for all queries and items,

 -objectives and associated cost functions 2: , in MOO-LTR, the

cost is a vector valued function

c(s) = [21 (s), · · · , 2 (s)]
) . (1)

Formally, a model that generates scores s is said to dominate

another model with ŝ if and only if 28 (s) ≤ 28 (ŝ), ∀8 ∈ � and

2 9 (s) < 2 9 (ŝ), ∃ 9 ∈ � , where � ∈ ["]. A model with score ŝ is said

to be Pareto optimal if there is no other model that dominates the

model with ŝ. A model with ŝ is said to be weak Pareto optimal

when there is no other model s s.t., 28 (s) < 28 (ŝ), ∀8 ∈ � , which

implies equality in determining dominance is allowed to be weak

PO while PO mandates strict inequality in costs.

MOOmethods are characterized by types of information they use

to build a PO model on PF that is a  − 1 dimensional manifold [13].

The MOO-LTR loss function in (1) gives rise to  score-gradients,

∇s2: for : ∈ [ ]. However, for training the GBRT based scoring

function, the C th decision tree requires exactly one score-gradient

as labels, not  score-gradients. Therefore, the constituent trees

require scalar labels. We combine the  score-gradients as

, =

 
∑

:=1

U:∇s2: , s.t.

 
∑

:=1

U: = 1, " ∈ R + , (2)

and use , ∈ R" as the labels for training the trees in GBRT. The

combination coe�cients " ∈ R + have  − 1 free parameters, and

are derived from the trade-o� speci�cation.

2.1 MOO methods in GBRT

2.1.1 Linear Scalarization (LS). In LS, the MOO cost in (1) is

converted to a scalar cost

6LSr (s) =

 
∑

:=1

A:2: (s), (3)

where r ∈ R + represents preferences/weights given to the costs.

The coe�cient vector in LS is

" = r/∥r∥1, (4)

and remains constant throughout the iterations. The preference vec-

tor r is an element in the dual space [18] of the objective space. It rep-

resents a hyperplane in the objective space. Let s∗r = argminB 6r (s)

be the PO solution corresponding to r. Then the hyperplane of

r passing through the point c(s∗r ) has to be both a tangent and

a support to the PF. Although LS provides a simple combination

strategy (4), there are several limitations. If any of the costs is a

non-convex function, LS can not guarantee to reach all points in

the PF by varying the preferences [3]. Moreover, a single preference

speci�cation can have non-unique PO solutions.

2.1.2 Stochastic Label Aggregation (SLA). In SLA, one gradi-

ent is randomly chosen for a query:

U: =

{

1, if : =  ,

0, otherwise,
for : ∈ [ ] (5)

where  is a categorical random variable over the K indices with

r/∥r∥1 as its parameters of the distribution. The expected cost of

SLA is the same as the cost of LS in (3) [9]. Thus, SLA can be seen

as a special type of LS.

2.1.3 Chebyshev Scalarization (CS). In CS, the cost c(s) in (1)

is scalarized to

6CSr (s) = max
:∈[ ]

A:2: (s) . (6)

To generate gradient, only the gradient of maximum relative objec-

tive value is chosen:

U: =

{

1, if : = :∗,

0, otherwise,
s.t. :∗ = arg max

:∈[ ]
A:2: (s) . (7)

As seen in (6), CS solves for ℓ∞-norm of c weighted by r. Geometri-

cally, it forms a hyper-rectangular level set along with r−1, which is

used to explore PF. With CS, PO points in the PF can be reached by

varying the preferences, even when the objectives are non-convex.

Moreover, apart from some corner cases [21] of weak PO, the CS

method guarantees that the �nal solution is unique. The weakness

in CS is non-smoothness optimization with ℓ∞-norm minimization,

which causes oscillations of solutions.

2.1.4 Exact Pareto Optimal Search (EPO). In EPO [19, 20], the

trade-o� speci�cation is the same as that of CS. Therefore, most

properties of CS are inherited. However, to overcome the limitations

of CS, its gradient combination is designed to avoid oscillations

around the r−1 ray. The coe�cients are obtained by solving a  

dimensional quadratic program:

min
" ∈R +

∥C)C" − a∥22, s.t.

 
∑

:=1

U: = 1, (8)

where C ∈ R"× is the matrix with  gradients in its column,

and a is an anchor direction in the objective space that determines

the �rst order change in cost vector: cC+1 − c
C ≈ Xc = C)C" from

Taylor series expansion of c(sC − C" ). Here, a is determined by

a =

{

c
C −

⟨cC ,r−1 ⟩

∥r−1 ∥2
r
−1, if cC is far,

r
−1, otherwise.

(9)

When c
C is far (w.r.t. cosine distance) from r

−1 ray, the anchor is

orthogonal to the r−1 ray and directed towards it. When c
C is near

r
−1 ray, we move the cost along the r−1 ray to avoid oscillations.

2.2 Evaluation metric on MOO-PD

To quantify the performance on MOO-PD, we propose to use ob-

jective function of CS (i.e., (6)), which captures alignment with the

r
−1-ray, and refer to it as the maximum weighted loss (MWL).

Figure 1 illustrates a prototypical case with 3 models. In terms of

MWL,"1 and"3 are the same, although"3 dominates"1. As a

tiebreaker, we use the volume of intersection between negative or-

thant (VNO) pivoted by each model and R + (shaded area in Figure
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1). Note that VNO should always be used as a tiebreaker when the

di�erence in MWL is insigni�cant. Compared with"2,"1 should

be preferable as it has a smaller MWL and thus is better aligned

with r
−1-ray, although neither one dominates the other.

M1 (1,1)

M2

(1.3,0.3)

M3 (0.3,1)

cost1

c
o
s
t 2

r -1 ray

0

Figure 1: Illustration of MWL

metric. "1 and "3 are aligned

with preference direction. "2 is

the worst. For "1 and "3, we

need to use the negative orthant

area as a tiebreaker, to identify

"3 is best overall.

3 EXPERIMENTS ON MICROSOFT DATASET

Dataset: We test MOO methods on Microsoft Learning to Rank

web search dataset (MSLR-WEB30K) [27] with 30, 000 queries. Each

query-url pair is represented by a 136 dimensional feature vector.

The labels are in the form of a relevance judgment (Rel) of �ve

grades. To construct multiple labels, we follow Momma et al. [24],

and use four of its 136 features, viz., Query-URL Click Count (Click),

URL Dwell Time (Dwell), Quality Score (QS1) and Quality Score2

(QS2)1, as additional relevance labels, and remove them from the

feature list to avoid data leakage.

Experimental setting For bi-objective experiments, we select four

pairs of labels: (Click, Rel), (QS1, Rel), (QS1, QS2), (Click, Dwell)

as objectives. Five r−1 rays are generated in the cost space to be

equally distributed over the region between the two baseline cost

vectors that are the costs for single objective models. While training

cost is used to measure alignment with the ray, test NDCG@5 is

used to compare the ranking performance. For three objective case,

we choose (QS1, QS2, Rel) and (Click, Dwell, Rel), and generate equi-

distributed 25 preference directions. We tune the hyperparameters,

i.e., number-of-trees and learning rate, of GBRT model by optimiz-

ing Rel. We choose 600 trees and 0.25 learning rate, after validating

on the grid of {300, 600, 900, 1200} trees and {0.05, 0.15, 0.25, 0.35}

learning rates, using NDCG@5. We use two folds (1 and 2) available

in [27], and aggregate results. For signi�cance test, we collect pairs

of observations from di�erent methods for each ray, and conduct

paired t-Test with 0.05 as signi�cance level.

3.1 Initial Experiment

As an initial experiment to apply existing methods in their original

form, we run LS, SLA, CS and EPO on (Click, Rel) pair (Figure 2).

While the simplest baseline, LS, performs well and seems to achieve

PO, others are inferior to it. For SLA, it is dominated by LS for most

of the cases in both cost and NDCG results (cf. square and plus

markers of the same colors in Figure 2). Further, performance of CS

and EPO is unstable and inferior to LS. To understand this, we plot

cost function curves in Figure 3. Clearly, LS is the only method that

has a smooth behavior. As SLA samples one label per query, and

would change over di�erent queries, there are non-smooth changes,

and this disruption seems to cause inferior performance in terms

1As the two quality scores in this dataset represent badness scores, we linearly convert
them to be treated as goodness scores.
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Figure 2: Quality Score vs. Relevance Judgment for existing

MOO methods. Same color is used for r−1-ray and the corre-

sponding models to distinguish results from di�erent rays.

of PO. For CS, the behavior is expected, as it chooses one label that

maximizes the weighted cost, which causes oscillations. However,

for EPO, though it uses �xed r
−1 as anchor when cost is close to the

r
−1-ray, it easily deviates from it, thus requiring correction steps

to move the model closer to r
−1 again. Clearly, the mechanism of

EPO, as a smoother version of CS, is broken and oscillation occurs,

resulting in performance degradations. Same issues are seen for all

pairs (and all datasets in this paper), although page limitation does

not allow us to show.

3.2 Remedy by smoothing

To mitigate the issues, there are couple of approaches: (1) Formu-

lating each problem with Augmented Lagrangian, which has been

successfully applied to solving n-constraint problem [25]; (2) Simply

taking moving average to force smoothing " :

"
C+1

= a" C + (1 − a)" C−1, 0 < a < 1, (10)

for each iteration C . We test (2) as a quick way to address the issue,

and set a = 0.1 throughout this paper. Cost curves of the smoothed

versions are shown in Figure 3 as bold colors. The cost/NDCG

result with smoothed " is shown in Figure 4. The improvement is

evident when comparing the original methods (smaller markers)

to the smoothed versions (larger markers). After the smoothing,

the models follow similar PF curves as that of LS. To quantify the

improvement, we compute MWL for test loss as the primary metric,

and hypervolume indicator (HI) as a secondary metric to check the

PO, and averaged over all runs (Table 1). Note LS is a smoother

version of SLA, since LS uses �xed " whereas SLA samples from

it. For all models, the smoothed version shows improvements on

HI and MWL. Particularly, improvements on the metrics on CS

are remarkable, making it the single best performer in MWL with

competitive performance in HI with EPO.

4 EXPERIMENTS ON OTHER DATASETS

We further validate our analysis by the Yahoo Dataset and one

proprietary E-commerce Dataset.

4.1 Yahoo Dataset

We experiment on the Yahoo Learning to Rank (YLTR) [10] chal-

lenge dataset with 36K queries. Each query-url pair is represented

by 700 features. Although these features are engineered (not learnt),
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we also show U associated with cost of Rel.

We use light color for the original methods

and bold for smoothed versions.
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Table 1: Metrics on MLSR dataset. “orig” refers to SLA and

non-smooth (original) versions of CS / EPO. “smt” refers to

LS and smoother version of CS / EPO. Bold numbers means

statistical signi�cance between orig and smt. Red number

refers to a single winner (i.e., signi�cance vs. all others).

MWL (test) HI (train cost) HI (test NDCG)

orig smt gain% orig smt gain% orig smt gain%

2-obj

SLA/LS 2.24 2.09 -6.7% 3.51 3.55 1.03% 0.93 0.96 2.20%

CS 5.14 1.97 -61.7% 3.41 3.55 4.21% 0.95 0.97 2.00%

EPO 2.57 2.02 -21.2% 3.51 3.56 1.70% 0.95 0.97 1.70%

3-obj

SLA/LS 2.01 1.86 -7.5% 6.37 6.52 2.40% 0.79 0.84 7.09%

CS 10.5 1.75 -83.3% 6.06 6.57 8.57% 0.81 0.89 9.80%

EPO 2.65 1.90 -28.3% 6.45 6.61 2.40% 0.87 0.88 1.69%

their descriptions, however, are not publicly released. Hence, we

select additional 5 labels, which have 5+ levels of values and least

correlation vs. each other. Note as we see cost vanishing behav-

ior coming from NDCG computation within LambdaRank due to

low granularity, we use RankNet cost [8], which is the pairwise

cost without NDCG factors. For tuning the model hyperparameters,

we follow a similar strategy as for MSLR-WEB30K, and select 600

trees and 0.25 for the learning rate. The results are summarized

in Table 2. Similar to MSLR, we see signi�cant gains in MWL and

HI via smoothing except for EPO. EPO shows signi�cantly worse

performance, which even smoothing did not help. CS (smooth) is

the single best model in this case as well.

4.2 E-commerce Dataset

We test MOO methods on E-commerce dataset. This dataset is pro-

prietary at the time of writing, and have similarity with dataset used

Table 2: Evaluation metrics on Yahoo dataset.

MWL (test) HI (train cost) HI (test NDCG)

orig smt. gain% orig smt. gain% orig smt. gain%

2-obj

SLA/LS 91.7 86.2 -6.00% 3.28 3.32 1.15% 0.94 0.95 1.85%

CS 87.3 81.0 -7.28% 3.28 3.34 1.86% 0.95 0.96 0.91%

EPO 107.3 107.4 0.07% 3.16 3.16 -0.01% 0.87 0.87 -0.05%

3-obj

SLA/LS 70.60 66.72 -5.49% 6.14 6.23 1.42% 0.84 0.88 5.17%

CS 72.88 60.46 -17.04% 6.24 6.40 2.54% 0.88 0.91 3.28%

EPO 82.05 82.00 -0.06% 5.91 5.90 -0.14% 0.73 0.73 -0.15%

in [25, 31]. The data is collected in 2021 for a particular shopping

site. We sample ~70K queries for training and ~30K queries for test,

and repeat two times for gaining power of the statistical test. We

create 4 labels, consisting of (historical) purchase, relevance score,

brandedness and shipping speed. The results are summarized in

Table 3. In this dataset as well, performance of all model is signi�-

cantly boosted by smoothing, and CS (smooth) is the best model.

Table 3: Evaluation metrics on E-commerce dataset.

MWL (test) HI (train cost) HI (test NDCG)

orig smt. gain% orig smt. gain% orig smt. gain%

2-obj

SLA/LS 1.72 1.69 -2.24% 3.29 3.30 0.34% 0.94 0.95 1.14%

CS 18.0 1.55 -91.4% 2.74 3.34 22.2% 0.88 0.98 10.2%

EPO 4.13 1.83 -55.7% 3.27 3.30 1.07% 0.93 0.95 2.25%

3-obj

SLA/LS 1.34 1.28 -4.47% 7.04 7.09 0.66% 0.86 0.89 3.30%

CS 21.3 1.12 -94.7% 5.39 7.13 32.1% 0.80 0.93 15.4%

EPO 2.53 1.30 -48.5% 7.11 7.15 0.49% 0.90 0.91 1.54%

5 CONCLUSIONS

In this paper, we applied existingmulti-objective optimizationmeth-

ods with preference directions (MOO-PD) to learning to rank (LTR)

problems. Although MOO-PD methods are developed and validated

in multi-task learning scenarios on mainly computer vision tasks,

their applications to LTR problems remains a novel research topic.

Indeed, simply applying the methods failed due to high sensitivity

of non-smooth optimization steps to the performance in LTR. To

address the issue, we proposed to use exponential moving averag-

ing of the gradient coe�cient. We veri�ed that the issues exist in all

three LTR datasets, and the remedy worked e�ectively for all cases.

In future work, we would further explore Augmented Lagrangian

for smoothing and verify the smoothing method with other MOO

methods on LTR datasets.
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