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ABSTRACT

Learning to Rank (LTR) technique is ubiquitous in Information

Retrieval systems, especially in search ranking applications. The

relevance labels used to train ranking models are often noisy mea-

surements of human behavior, such as product ratings in product

searches. This results in non-unique ground truth rankings and am-

biguity. To address this, Multi-Label LTR (MLLTR) is used to train

models using multiple relevance criteria, capturing con�icting but

important goals, such as product quality and purchase likelihood

for improved revenue in product searches. This research leverages

Multi-Objective Optimization (MOO) in MLLTR and employs mod-

ern MOO algorithms to solve the problem. A general framework is

proposed to combine label information to characterize trade-o�s

among goals, and allows for the use of gradient-based MOO algo-

rithms. We test the proposed framework on four publicly available

LTR datasets and one E-commerce dataset to show its e�cacy.

CCS CONCEPTS

• Computing methodologies→Machine learning;Multi-task

learning; • Information systems→ Learning to rank.
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1 INTRODUCTION

The �eld of Learning to Rank (LTR) has seen signi�cant growth

in recent years due to the availability of large amounts of labeled

data for query-item relevance, either obtained through manual
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Figure 1: Three trade-o� speci�cations investigated in our

paper for Multi-Label Learning to Rank: Linear Scalarization,

Weighted Chebyshev, and n−Constraint. These are used to

prioritize one objective/criterion over another with di�erent

levels/types of speci�city.

labeling or user behavior tracking. LTR aims to train a scoring func-

tion that assigns a relevance score to each retrieved item in order

to rank them in the �nal results. Initially, LTR relied on a single

criterion for relevance, but this uni-dimensional approach has been

criticized for its limitations, such as subjectivity and noise in rele-

vance articulation and an inability to account for multiple goals. To

address these limitations, Multi-Label Learning to Rank (MLLTR)

was introduced, which utilizes a multi-dimensional approach to rel-

evance [35]. However, this multi-dimensional aspect also presents

a major challenge: di�erent relevance criteria can sometimes be in

con�ict. For instance, in web search, the goals of displaying items

that the user is familiar with based on their view/click history and

increasing the number of serendipitous items in the top results can

be at odds. Given this con�ict, it is often di�cult to �nd a scoring

function that optimizes for all relevance criteria simultaneously,

requiring a compromise between them.

Multi-Objective Optimization (MOO) is a fascinating area that

deals with the trade-o�s between multiple objectives. One of the

most important concepts in MOO is the Pareto Frontier (PF), which

is a set of non-dominated solutions that represent the trade-o�s

between the objectives. The history of MOO research is rich, with

numerous methods developed to specify the trade-o� between
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objectives. These methods include linear scalarization, weighted

Chebyshev, and the n−constraint method, among others. Despite

these many methods, recent studies on MLLTR have mainly fo-

cused on approximating the PF, rather than �nding a unique non-

dominated solution that represents a particular trade-o�. This is

because the individual solutions on the PF may not necessarily

correspond to a speci�c trade-o� [6]. At best, they may only corre-

spond to one type of trade-o� [27]. Thus, there is a need for more

research to develop methods that can accurately capture the trade-

o�s between objectives, leading to a better understanding of the PF

and the trade-o�s represented by its solutions.

Approximating the entire PF without considering trade-o� spec-

i�cations may seem attractive, but it is not practical for MLLTR.

The �nal result presented to the user is merely a single ranked list

of items based on a single non-dominated scoring function, which

does not take into account potential trade-o�s among di�erent ob-

jectives. In contrast, our approach combines principles of MOO and

MLLTR to not only approximate the PF, but also to identify scoring

functions associated with di�erent types of trade-o� speci�cations

that would be more applicable in real world deployment.

1.1 Our Contributions

We summarize our contributions below:

• We formulate theMLLTR problem as aMOOproblem and develop

a comprehensive framework that allows for the integration of

any �rst-order gradient-based MOO algorithm.

• We investigate three forms of trade-o� speci�cations, as depicted

in Figure 1, and evaluate various MOO techniques to obtain their

non-dominated solutions. Our analysis delves into the pros and

cons of each method, enabling a decision on the most appropriate

method to employ in a given scenario. Additionally, we present

a practical example of how a reference model deployed in the

production system can be updated by exploring the PF around it.

• We uncover a hindrance in training models using a majority of

MOO methods, which prevents them from converging to the PF

due to oscillations in the cost function. To address this issue, we

introduce a smoothing technique as a solution.

• We evaluate the e�ectiveness of the proposed MLLTR framework

on �ve industrial datasets - four open-source datasets and one

production dataset from E-commerce. The comparison of MOO

methods is based on their ability to adhere to the trade-o� speci�-

cation and accurately approximate the PF. The incorporation of a

smoothing technique results in a signi�cant improvement in their

empirical performance on these datasets. Moreover, one of the

MOO algorithms has been deployed in production. This demon-

strates that our MLLTR framework o�ers a practical solution

for building MLLTR models that can bene�t various industrial

production systems.

1.2 Related Work

Several studies have integrated multiple relevance criteria into

information retrieval systems, including web search and recom-

mendation [35, 8, 9, 14, 38, 36], and product search [19, 15]. These

traditional methods can be grouped into three categories: model

aggregation, where individually trained models are combined to

produce the �nal ranking; label aggregation, where the relevance

labels are combined to create a single ranking model; and Linear

Scalarization (LS), where a weight is assigned to each relevance

criterion, collapsing the utility into a scalar function. The state-of-

the-art Stochastic Label Aggregation (SLA) method [6] has been

shown to be equivalent to LS. For recommendation applications,

[18] proposed a framework for MOO-based MLLTR that guarantees

�nding non-dominated solutions, but does not consider trade-o�s.

In product search applications, [27, 26] proposed multiple rele-

vance criteria and developed an n−Constraint MOO algorithm that

enables trade-o� speci�cation as upper bounds for all objectives

except one.

Recently, various gradient-based MOO algorithms have been

developed for Multi-Task Learning (MTL) applications [31, 17] to

approximate the PF. [23] introduced an EPO algorithm that guar-

antees to �nd solutions that correspond to trade-o� speci�cations

de�ned by objective priorities. [25] developed the WC-MGDA al-

gorithm that o�ers the same guarantees and can improve over

arbitrary reference models. Meanwhile, [13] proposed the DBGD

algorithm, an n−Constraint type method that allows for trade-o�

speci�cation as upper bounds of all objectives except one. In our

MLLTR framework, we facilitate trade-o� speci�cation through

various MOO methods, including classic methods such as LS and

modern ones like EPO.

Another related research area in LTR also examines a multi-task

learning approach. However, it uses only a single relevance label

and incorporates auxiliary objectives to ensure that ranking results

meet speci�c requirements, such as scale calibration [40], fairness

[32, 28, 21], and diversity [16]. Conversely, our study focuses on

employing sophisticated MOO algorithms to train ranking models

using multiple labels, not just one relevance label.

2 BACKGROUND

2.1 Learning to Rank

Let Q be the set of all possible queries and D be the set of all

documents or items. For a given query @ ∈ Q, let �@ = {38 }
=@
8=1 ⊂ D

be the subset of =@ matched items. Let a query-item pair (@, 38 ) be
represented by a ?-dimensional feature vector x

@
8 ∈ R

? . The goal

of LTR is to learn a parametric scoring function 5) : R? → R that

can assign a score B
@
8 to each (@, 38 ) pair from its corresponding

vector representation, i.e., x
@
8 ↦→ B

@
8 . The items can then be ranked

in descending order of scores.

For a (@, 38 ) pair, we denote the relevance label as ~
@
8 ∈ Y,

The training dataset for LTR consists of several queries: DLTR =
{

{

(

x
@
8 , ~

@
8

)

}=@
8=1

}<

@=1
, where< is the number of queries and =@ is

the number of data points in each query group.

For a query @, let the output of a scoring function 5) for all the

matched items in �@ be represented by a score vector s@ ∈ R=@ .
Similarly, let the corresponding relevance labels be denoted by the

vector y@ ∈ R=@ . The training cost is given by

2 () ) = 1

<

<
∑

@=1

ℓ (s@, y@), where B
@
8 = 5) (x

@
8 ) (1)

for all 8 ∈ [=@] = {1, 2, · · · , =@}, and the per-query loss ℓ (s@, y@)
quanti�es the extent to which the ordering of scores disagrees with

that of the relevance labels.
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In the pair-wise approach of LambdaMART cost [4], the event

that one item38 is more relevant than another3 9 w.r.t. @, denoted by

38 ▷@ 3 9 , is probabilistically modeled as P(38 ▷@ 3 9 ) = 1

1+4−f (B
@
8
−B@
9
)
,

where f controls the spread of the Sigmoid function. The per-query

loss ℓ in (1) is constructed from the log-likelihood (ℓℓ) of ) given

the (presumably independent) observations in the training data:

ℓ (s@, y@) = −ℓℓ () |D@)

=

∑

(8, 9 ) ∈�@
|Δ#��� (8, 9) | · log

(

1 + 4−f (B
@
8 −B

@
9 )
)

, (2)

where D@ = {(x@8 , ~
@
8 )}

=@
8=1 is data pertaining to the matched items

�@ , �@ =

{

(8, 9) ∈ [=@]2
�

�

� ~
@
8 > ~

@
9

}

consists of item pairs having a

strict relevance order, and Δ#��� (8, 9) is the change of the NDCG
value when two items 8 and 9 swap their rank positions [4].

The scoring function is modeled by GBM [12] with # decision

trees: 5 #
)
(x) = )\ 0 (x) −

∑#−1
C=1 [C)\C (x), where [C is the learning

rate,)\C is the C
th tree, and the full model parameter is ) = {\C }#−1C=0 .

On the C th iteration, the tree)\C is learnt from the following training

data:

D)\C =

{{(

x
@
8 , m2/mB

@
8

)}=@

8=1

}<

@=1
, (3)

where the labels are gradients of cost w.r.t. the scores. In other

words, instead of updating 5) in the parameter space, it is updated

in the function space of trees: 5 C+1
)

= 5 C
)
−[C)\C . The function space

update of GBM su�ces to treat the cost as a function of scores

rather than the parameters ) . Henceforth, we consider the cost

2 : R" → R as a function of s , and rewrite (1) as

2 (s) = 1

<

<
∑

@=1

ℓ (s@, y@) . (4)

2.2 LTR from Multiple Relevance Labels

In MLLTR, di�erent relevance criteria are measured, providing

multiple labels for each query-item pair. The goal of MLLTR is still

the same as that of LTR: to learn a scoring function 5) that assigns

a scalar value to each (@, 38 ) pair.
The labels for (@, 38 ) are ~@8: ∈ Y: for : = 1, · · · ,  , where  is

the number of relevance criteria. Similar to LTR, each label set

Y: could be either discrete or continuous, endowed with a total

ordering relation. The training dataset for MLLTR is denoted by

DMLLTR =

{

{

(

x
@
8 , ~

@
81, · · · , ~

@
8 

)

}=@
8=1

}<

@=1
. (5)

Each relevance criterion has a training cost. Therefore, inMLLTR,

the cost is a vector valued function: c(s) = [21 (s), · · · , 2 (s)]) ,
naturally making it an MOO problem.

2.3 Multi-Objective Optimization

In MOO, the cost function c : R" → R is a mapping from the

solution space R" to the objective space R .

We useR + :=
{

c ∈ R 
�

� 2: ≥ 0, ∀ : ∈ [ ]
}

, the cone of positive

orthant, to de�ne a partial ordering relation. For any two points

c1, c2 ∈ R , we write c1 ≽ c2, if c1 lies in the positive cone pivoted

at c2, i.e., c1 ∈
{

c2 + c
�

� c ∈ R +
}

. In other words, c1 ≽ c2 ⇐⇒

c1 − c2 ∈ R + , making 21
:
≥ 22

:
, ∀: ∈ [ ]. We de�ne c1 ≻ c2 when

there is at least one : for which 21
:
> 22

:
, i.e., c1 ≠ c2.

For minimization, a solution s ∈ R" is said to be non-dominated

or Pareto optimal, if there exists no other solution s′ ∈ R" such

that c(s) ≻ c(s′). We call the set of all non-dominated solutions the

Pareto optimal set. The image of this Pareto set under the function

c is the Pareto Frontier (PF), which can be a  − 1-dimensional

manifold if connected [11, 22].

3 A FRAMEWORK FOR MULTI-LABEL LTR

Multi-Gradient Combination: The MLLTR cost function gives

rise to  score-gradients, ∇s2: for : ∈ [ ]. However, for training
the GBM based scoring function, the C th decision tree requires

exactly one score-gradient as labels in its training data (3), not  

score-gradients. Although the cost is upgraded to become a vector

valued function in MLLTR, the scoring function remains a scalar

valued function. We combine the  score-gradients as

, =

 
∑

:=1

U:∇s2: , s.t.

 
∑

:=1

U: = 1, " ∈ R + , (6)

where , ∈ R" are the labels for training the trees in GBM and "

are combination coe�cients.

3.1 Linear Scalarization Based Methods

Linear Scalarization (LS): The MOO cost is converted to a scalar

cost 6LSr (s) =
∑ 
:=1

A:2: (s), where r ∈ R + represents prefer-

ences/priorities given to the costs.

Gradient Combination: It remains static throughout the iterations

" = r/∥r∥1 . (7)

Although LS is simple, specifying trade-o�s by elements in the

dual space has limitations. If any of the costs is a non-convex func-

tion, i.e., the range O becomes a non-convex set, LS can not guar-

antee to reach all points in the PF by varying the preferences [2],

as illustrated in Figure2a.

Stochastic Label Aggregation (SLA):One gradient is randomly

chosen following the distribution:

U: =

{

1, if : =  ,

0, otherwise,
for : ∈ [ ] (8)

where  is a categorical random variable over the K indices with

r/∥r∥1 as its probability distribution. In other words, the  
th

label

is used for training. The expected cost of SLA is the same as that of

LS [6]. Thus, SLA can be seen as a special type of LS.

3.2 Preference Direction Based Methods

3.2.1 Weighted Chebyshev (WC):. In WC, the vector valued cost is

scalarized to

6WC
r (s) = max

:∈[ ]
A:2: (s) . (9)

In general, the solution s∗r = mins 6
WC
r (s) satis�es A121 (s∗r ) =

A222 (s∗r ) = · · · = A 2 (s∗r ) [24], which can be deduced by analyzing

the level sets, illustrated in Figure2b. This makes the trade-o� spec-

i�cation between the objectives stricter than the penalty approach

in the LS.



KDD ’23, August 6–10, 2023, Long Beach, CA, USA Debabrata Mahapatra, Chaosheng Dong, Yetian Chen, & Michinari Momma

<latexit sha1_base64="FL/2fAbezFCVBV2TA82Tj9jdLIw=">AAACO3icbVDLTgIxFO3gC/EFumTTSEhcGDJjiLokunEnJvKIMCGdTgcaOu2k7RDJhL9wq3/ih7h2Z9y6twOzUOAkTU7Ouae593gRo0rb9oeV29jc2t7J7xb29g8Oj4ql47YSscSkhQUTsushRRjlpKWpZqQbSYJCj5GON75N/c6ESEUFf9TTiLghGnIaUIy0kZ76IdIjz0vuZ4Nixa7Zc8BV4mSkAjI0ByWr3PcFjkPCNWZIqZ5jR9pNkNQUMzIrVGE/ViRCeIyGpGcoRyFRbjJfegarRvFhIKR5XMO5WliXOPcnNFJZ+HmR/juYoFCpaeiZL9Nr1LKXimu9VNFCMLXO7cU6uHYTyqNYE44X+wYxg1rAtEjoU0mwZlNDEJbUHA3xCEmEtam7YOp0lstbJe2LmnNZqz/UK42brNg8KINTcAYccAUa4A40QQtgwMELeAVv1rv1aX1Z34vRnJVlTsA/WD+/oEuuOw==</latexit>

O

c
1

g L
Sr

=
γ

Pareto Front

Level S
ets

c
2

0

Tangent &
 S

uport
S
ad

d
le P

oint

(a) LS & SLA

<latexit sha1_base64="FL/2fAbezFCVBV2TA82Tj9jdLIw=">AAACO3icbVDLTgIxFO3gC/EFumTTSEhcGDJjiLokunEnJvKIMCGdTgcaOu2k7RDJhL9wq3/ih7h2Z9y6twOzUOAkTU7Ouae593gRo0rb9oeV29jc2t7J7xb29g8Oj4ql47YSscSkhQUTsushRRjlpKWpZqQbSYJCj5GON75N/c6ESEUFf9TTiLghGnIaUIy0kZ76IdIjz0vuZ4Nixa7Zc8BV4mSkAjI0ByWr3PcFjkPCNWZIqZ5jR9pNkNQUMzIrVGE/ViRCeIyGpGcoRyFRbjJfegarRvFhIKR5XMO5WliXOPcnNFJZ+HmR/juYoFCpaeiZL9Nr1LKXimu9VNFCMLXO7cU6uHYTyqNYE44X+wYxg1rAtEjoU0mwZlNDEJbUHA3xCEmEtam7YOp0lstbJe2LmnNZqz/UK42brNg8KINTcAYccAUa4A40QQtgwMELeAVv1rv1aX1Z34vRnJVlTsA/WD+/oEuuOw==</latexit>

O

c
1

Pareto Front

c
2

0

r
−1 ray

Level Sets 

a
far

a
near

 far  

from 

c
t

r
−1

 near to c
t

r
−1

Anchor


directions

gWC

r
= γ

(b) WC & EPO

<latexit sha1_base64="FL/2fAbezFCVBV2TA82Tj9jdLIw=">AAACO3icbVDLTgIxFO3gC/EFumTTSEhcGDJjiLokunEnJvKIMCGdTgcaOu2k7RDJhL9wq3/ih7h2Z9y6twOzUOAkTU7Ouae593gRo0rb9oeV29jc2t7J7xb29g8Oj4ql47YSscSkhQUTsushRRjlpKWpZqQbSYJCj5GON75N/c6ESEUFf9TTiLghGnIaUIy0kZ76IdIjz0vuZ4Nixa7Zc8BV4mSkAjI0ByWr3PcFjkPCNWZIqZ5jR9pNkNQUMzIrVGE/ViRCeIyGpGcoRyFRbjJfegarRvFhIKR5XMO5WliXOPcnNFJZ+HmR/juYoFCpaeiZL9Nr1LKXimu9VNFCMLXO7cU6uHYTyqNYE44X+wYxg1rAtEjoU0mwZlNDEJbUHA3xCEmEtam7YOp0lstbJe2LmnNZqz/UK42brNg8KINTcAYccAUa4A40QQtgwMELeAVv1rv1aX1Z34vRnJVlTsA/WD+/oEuuOw==</latexit>

O

c
1

Pareto Front

c
2

0

Reference point 

b

r
−1 ray

(c) WC-MGDA

<latexit sha1_base64="FL/2fAbezFCVBV2TA82Tj9jdLIw=">AAACO3icbVDLTgIxFO3gC/EFumTTSEhcGDJjiLokunEnJvKIMCGdTgcaOu2k7RDJhL9wq3/ih7h2Z9y6twOzUOAkTU7Ouae593gRo0rb9oeV29jc2t7J7xb29g8Oj4ql47YSscSkhQUTsushRRjlpKWpZqQbSYJCj5GON75N/c6ESEUFf9TTiLghGnIaUIy0kZ76IdIjz0vuZ4Nixa7Zc8BV4mSkAjI0ByWr3PcFjkPCNWZIqZ5jR9pNkNQUMzIrVGE/ViRCeIyGpGcoRyFRbjJfegarRvFhIKR5XMO5WliXOPcnNFJZ+HmR/juYoFCpaeiZL9Nr1LKXimu9VNFCMLXO7cU6uHYTyqNYE44X+wYxg1rAtEjoU0mwZlNDEJbUHA3xCEmEtam7YOp0lstbJe2LmnNZqz/UK42brNg8KINTcAYccAUa4A40QQtgwMELeAVv1rv1aX1Z34vRnJVlTsA/WD+/oEuuOw==</latexit>

O

c
1

Pareto Front

c
2

0 ϵ
1

ϵ
1

ϵ
1

Minima of 


primary objective 


with three different 


upper bounds on 

c
2

c
1

(d) n−Constraint methods

Figure 2: Illustration of trade-o� speci�cations. (2a) shows how LS can have non-unique Pareto optimal points. (2b) shows WC

can attain the blue optimum by minimizing 6WC
r and illustrates how EPO works. (2c) shows WC-MGDA can �nd Pareto optima

better than the arbitrary reference point b. (2d) shows n−Constraint can �nd di�erent Pareto optima by constraining the cost�1.

Gradient Combination: Only the gradient of maximum relative

objective value is chosen:

U: =

{

1, if : = :∗,

0, otherwise,
s.t. :∗ = arg max

:∈[ ]
A:2: (s) . (10)

The objective vector value is proportional to the r−1 ray as

illustrated in Figure2b. This trade-o� speci�cation guarantees that

Pareto optimal points in the PF can be reached by varying the

preferences, even when the objectives are non-convex. However,

in practice, the strict trade-o� requirement hinders the progress in

cost value reduction.When optimizing with a step size (i.e., learning

rate), the iterate cC (cost at C th iteration) oscillates around r−1 ray.

3.2.2 Exact Pareto Optimal Search (EPO):. In EPO [23, 22], the trade-

o� speci�cation is the same as that of WC. Therefore, most prop-

erties of WC are inherited. However, to overcome the limitations

of WC, its gradient combination is designed to avoid oscillations

around the r−1 ray.
Gradient Combination: The coe�cients are obtained by solving

a quadratic program:

min
" ∈R +

∥C)C" − a∥22, s.t.

 
∑

:=1

U: = 1, (11)

where C ∈ R"× is the matrix with  gradients in its column,

and a is an anchor direction in the objective space that determines

the �rst order change in cost vector: cC+1 − cC ≈ Xc = C)C" from

Taylor series expansion of c(sC − C" ). Here, a is determined by

a =

{

cC − ⟨c
C ,r−1 ⟩
∥r−1 ∥2 r

−1, if cC is far,

r−1, otherwise.
(12)

When cC is far (w.r.t. cosine distance) from r−1 ray, the anchor is
orthogonal to the r−1 ray and directs towards it, as illustrated in

Figure2b. On the other hand, when cC is near r−1 ray, we move the

cost along the r−1 ray avoiding oscillations.

3.2.3 Weighted Chebyshev MGDA (WC-MGDA):. In WC-MGDA

algorithm [25], the trade-o� speci�cation is similar to that of WC

method, but the SOCP formulations are designed to avoid the short-

comings of WC, i.e., through the preferences over the objectives.

WC-MGDA aims to build models that are closer or better than the

reference model.

Gradient Combination: The coe�cients are obtained by:

max
" ∈R + ,x∈'=,W

"
⊺ (r ⊙ (l (x) − b)) − DW (13)

s.t.

 
∑

:=1

U: = 1, , ∥Mr" ∥2 ≤ W, (14)

where b is the loss of the referencemodel, andMr ≡ diag(
√
r)Mdiag(

√
r).

Here, M = (
√

C)C).
WC-MGDA jointly solves WC and MGDA to ensure achieving

both preference alignment and Pareto Optimality. While the WC

problem tries to �nd solutions by minimizing weighted ℓ∞, the
norm minimization ensures Pareto Optimality.

M1 (1,1)

M2

(1.3,0.3)

M3 (0.3,1)

cost1

c
o
s
t 2

r -1 ray

0

Figure 3: Illustration of the

Maximum Weighted Loss

(MWL) metric."1 is better

than"3. However, between

"1 and "3, we need to use

the negative orthant area

for tie breaker.

3.2.4 Evaluation Metric for Preference Direction Based MLLTR:. To

quantify the performance on preference based MLLTR, we use the

objective function of WC (9), which exactly captures alignment

with the r−1-ray and is referred to as maximum weighted loss

(MWL). Figure 3 illustrates a prototypical case with 3 models. In

terms of MWL, "1 and "3 are the same, although "3 dominates

"1, and better than"2. Between"1 and"3, we use the volume of

intersection between the negative orthant (VNO) pivoted by each

model and R + (color shaded area in Figure 3) as a tiebreaker. Note,

VNO should always be used as a tie breaker when the di�erence

in MWL is insigni�cant in our paper. For example, MWL are 1 for

both"1 and"3. VNO for"1 is 1 while VNO for"3 is 1× 0.3 = 0.3.

Thus,"3 is better than"1 due to the VNO of"3 is smaller even if

MWL are the same for both models.
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Table 1: Description of when to use which MOO method for MLLTR

MOOMethod Suitable When Type of Trade-o� speci�cation

LS/SLA total utility / cost is known weights on linear combination of costs

WC/EPO ratio between objectives is given as preference direction preference direction (ratio between objectives)

WC-MGDA a reference model is known (pretrained model), preference direction from the reference model preference direction (ratio between objectives)

EC-AL/EC-DBGD hard constraints on objectives are known constraints (upper bounds) for secondary criteria

Algorithm 1MLLTR by Gradient Boosted Decision Trees

Input: DMLLTR from (5), # , learning rate(s) [

Parameter: GBM con�gurations, 2><18=0C>A

Output: scoring function 5)

1: Set 5 0
)
= )\ 0 ⊲ Usually, this is set to 0

2: for C ← 1 to # − 1 do
3: Get s: B

@
8 = 5 C

)
(x@8 ) for all (@, 38 ) pair, c

C and gradients CC

4: "
C = GetCoefficients(cC ,CC , 2><18=0C>A )

5: Smooth "
C using (19)

6: Prepare data D) C
\
as (3) but with labels , = CC" C

7: Fit the tree T\C to D) C
\

8: Update Scoring function: 5 C
)
= 5 C−1

)
− [CT\C

9: if ∥cC − cC−1∥ ≈ 0 then Break

10: return 5 C
)

3.3 n−Constraint (EC) Methods

3.3.1 n−Constraint Augmented Lagrangian (EC-AL). In this method,

the MOO problem is transformed into

min
s∈R"

2:? (s) s.t. 2: (s) ≤ n: , for : ∈ [ ] − {:? }, (15)

where one cost :? is treated as the primary cost and the rest  − 1
costs are restricted to satisfy an upper bounded constraint given

by the n: .

Gradient Combination: [27] proposed an augmented Lagrangian

form of (15) as

max
"

min
s
L(s," ) = 2:? (s) +

∑

:∈[ ]?
U: (2: (s) − n: ), (16)

where [ ]? = [ ] − {:? }. At iteration C , " is decided according to

a proximal update strategy

UC
:
=

{

` (2C
:
− n: ) + UC−1:

, if 2C
:
− n: ≥ 0,

0, otherwise.
(17)

for : ∈ [ ] − {:? }, where ` > 0 is a positive value, and UC−1
:

is

the coe�cient of the previous iteration. Coe�cient of a secondary

objective is non-zero only when its constraint is violated.

3.3.2 n-Constraint Dynamic Barrier Gradient Descent(EC-DBGD).

The trade-o� speci�cation is the same as that of EC-AL, i.e., through

the upper bounds on secondary objectives. The coe�cients are

obtained by solving the following convex quadratic program [13]:

min
" ,U:? =1

1

2
∥C" ∥22 −

∑

:∈[ ]?
U:q: (s) , (18)

where q: is a control function associated with constraint 2:? (s) for
: ∈ [ ]? .

Algorithm 2 Multi-Gradient Coe�cient from MOO

1: function GetCoefficients(c, C, 2><18=0C>A )

2: Do some action.

3: if 2><18=0C>A = LS then " from (7)

4: else if 2><18=0C>A = SLA then " from (8)

5: else if 2><18=0C>A = WC then " from (10)

6: else if 2><18=0C>A = EPO then " from (11)

7: else if 2><18=0C>A = WC-MGDA then " from (13)

8: else if 2><18=0C>A = EC-AL then " from (17)

9: else if 2><18=0C>A = EC-DBGD then " from (18)

10: return "

We illustrate three types of trade-o� speci�cations in Figure 2,

summarize the training of scoring function in algorithm 1, the MOO

methods in algorithm 2, and when to use which method in table 1.

3.4 Non-Smooth Trajectory and Remedy by
Moving Average (MA)

All the MOO methods discussed previously are �rst order methods,

where the �nal search direction is formulated by adaptively com-

bining the objective gradients. However, the step size is kept �xed

(or heuristically decreased) in every iteration, instead of adapting

it to the ever changing search direction. This causes the iterates to

exhibit oscillatory behavior in their cost functions, as empirically

veri�ed in section 4.2 and 4.3. Note, although theoretically step size

selection techniques such as Line Searchmethods [37] can adapt the

step size, they cannot be used in practice due to high computational

cost: the objective function needs to be computed several times in

every iteration. Moreover, it is non-trivial to extend these methods,

primarily developed for single objective, to multi-objective setup.

Not all MOO method exhibit non-smooth trajectory though. In

LS, it does not happen because the search direction do not change

drastically as it is the gradient of a �xed objective function. In

EC-AL, there is no change in the coe�cients of primary cost, and

change for secondary costs are smoothed by the coe�cients of

previous iteration.

To mitigate this issue of non-smooth trajectory MOO methods,

we propose a simple yet e�ective technique. We apply a moving

average (MA) �lter to " between consecutive iterations:

"
C ← a" C + (1 − a)" C−1, (19)

where a ∈ (0, 1) is a smoothing factor. Note that this is di�erent

from the momentum based �rst order methods [30] for single ob-

jective, where MA is applied on its gradient. It is not applicable

to multi-objective case, because the search direction can change

signi�cantly between consecutive iterations due to change in the

" , even when the objective gradients do not change signi�cantly.

Therefore, we smoothen the coe�cients rather than the gradients.
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Table 2: Details of the Learning-to-Rank datasets

Datasets # queries (train/test) # features # labels # bi-objectives # tri-objectives Label selection from

MSLR-WEB30k 20K/10K 136 5 10 6 feature description

Yahoo 20K/7K 519 6 15 10 descriptive analytics

ISTELA 20K/6.6K 220 5 10 10 descriptive analytics

ISTELA-S 20K/6.6K 220 5 10 10 descriptive analytics

E-commerce 500K/100K 29 5 8 6 feature description

4 EXPERIMENTS

We evaluate the e�ectiveness of our MLLTR framework by examin-

ing the compliance with the trade-o� speci�cation and accuracy in

approximating the PF. The performance improvement provided by

the MAmethod, as described in Section 3.4, is also assessed for each

MOO method. Lastly, we demonstrate how extended preference-

based methods can be used to explore the PF around a reference

objective vector, thereby updating production models.

4.1 Datasets and Experimental Settings

We test our MLLTR framework using �ve datasets: the Microsoft

LETOR dataset (MSLR-WEB30K) [29], Yahoo! LETOR dataset [7], Is-

tella LETOR dataset [10], Istella-S [20], and a proprietary E-commerce

dataset that has similarities to the datasets used in [33, 27], but was

collected in 2021. Details of these datasets can be found in Table 2.

For all datasets, we use some features as additional labels in ad-

dition to the original relevance label and remove them from the fea-

ture list to prevent data leakage. The extra labels for MSLR-WEB30K

are Query-URL Click Count (Click), URL Dwell Time (Dwell), Qual-

ity Score (QS), and Quality Score2 (QS2). Unlike the MSLR dataset,

feature descriptions for Yahoo! and two Istella datasets are not pub-

licly available. Thus, we selected extra labels for them through a

descriptive analysis of the features (for details, see Appendix A).

The labels for the E-commerce dataset include a binary target indi-

cating whether an item was purchased or not, historical purchases,

relevance score between the query and product, brandedness scores

of the product, and delivery speed of the product.

4.1.1 Trade-o� Specification. For LS and preference-based meth-

ods, we set r as follows. For bi-objective cases, we generated 5

r−1 rays that are equally distributed in the region between the

two "baseline cost" vectors. A baseline cost vector was obtained by

training a model for only one objective and computing costs for all

objectives. For the tri-objective case, we generated 25 preference di-

rections using PESA [34, 22], which samples equi-distributed points

on the convex hull of baseline cost vectors. For the n-Constraint

methods, we set the & of the secondary objectives as follows. In

a bi-objective case, the baseline cost vector corresponding to the

primary objective has a sub-optimal cost value for the non-primary

objective. We set 5 upper bounds by dividing this sub-optimal cost

into 5 levels. Similarly, in a tri-objective case, the two sub-optimal

cost values in the baseline cost vector were divided into 5 levels

each, resulting in 25 pairs of upper bounds for the two non-primary

objectives.

4.1.2 Hyperparameter Tuning. For each dataset, we �ne-tuned

hyperparameters (i.e., number of trees and learning rate) of the

GBM model by conducting LTR using main relevance judgments

as the single label. We selected the best con�guration of hyperpa-

rameters (according to the NDCG@5), which was 600 trees and a

learning rate of 0.25, after evaluating the grid of hyperparameters

{300, 600, 900, 1200}×{0.05, 0.15, 0.25, 0.35} for number of trees and

learning rates, respectively.

4.2 Qualitative Evaluation

As a preliminary experiment, we applied existing methods in their

original form to the (Click, Rel) pair on the MLSR dataset, including

linear weighting methods (LS, SLA), preference-based methods

(WC, EPO, WC-MGDA), and EC methods (EC-AL, EC-DBGD).

4.2.1 Compliance with Trade-o� Specification. To visualize the

compliance, we compute the cost vectors on training dataset. To

assess the ranking performance, we compute the NDCG@5 metric

on validation data. Figure 4 shows the result.

In Figure 4a, we observe that the �nal cost vectors of LS and

SLA are very similar for each preference speci�cation, which is

expected as they are known to be probabilistically equivalent [6].

However, the solutions generated by LS slightly dominate those

of SLA in the cost space, which translates to better performance

in the NDCG space. The solutions produced by preference-based

methods (WC, EPO, and WC-MGDA) have a closer alignment with

the preference rays than LS and SLA. This is particularly evident

for extreme preference rays near the baselines, where the blue and

purple square points of LS are farther from the corresponding pref-

erence rays compared to WC, EPO, and WC-MGDA. This indicates

that if the trade-o� is speci�ed not as a utility but as a ratio between

objectives, LS should not be used. Nevertheless, if one considers

the frontier of solutions, LS dominates every other method in the

non-extreme regions of the PF. Similarly, in Figure 4b, for the n-

Constraint methods, the solutions of both EC-AL and EC-DBGD

generally comply with the constraint speci�cations. However, the

frontier of EC-AL is superior to that of EC-DBGD in most cases.

4.2.2 Issue of Non-Smooth Trajectory. Keeping the aspect of trade-

o� compliance aside, a surprising observation is the solutions from

the simpler baselines such as LS and EC-AL seems to dominate the

other methods. To understand this, we plot cost curve for several

models in Figure 5. LS is the only method that has smooth behavior

in the �gure. SLA is a stochastic version of LA and non-smooth

changes are visible, which causes inferior dominance. For WC,

the oscillation is expected, as it chooses only one label that have

maximum weighted cost. Although EPO does achieve lower values

of the cost as compared to WC, it still has oscillations. We observed

the same issues exists in WC-MGDA and EC-DBGD, across all

multi-label experiments and datasets.
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(a) LS/SLA and preference based MOO methods.
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(b) n-Constraint methods.

Figure 4: Initial results of bi-objective experiments on MSLR-WEB30K [29] dataset. Colored lines and points represent di�erent

trade-o� speci�cations and the corresponding solutions, respectively.
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Figure 5: Cost curves for (a) SLA/LS, (b) WC and (c) EPO for (Click, Rel). For WC and EPO, we also show U for Rel. We use light

color for the original methods and dark for smoothed versions.
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(a) preference based methods with moving average.
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(b) n-Constraint methods with moving average

Figure 6: Improved results with moving average. Most of the models are close to the Pareto Front.

4.2.3 Improvement with Moving Average. We have consistently

used a smoothing factor ofa = 0.1, as speci�ed in (19). The smoothed

cost curves are displayed in Figure 5 using dark colors for the WC

and EPO methods. The improved results in the cost/NDCG space

with smoothed " can be seen in Figure 6, presenting a noticeable

improvement when compared to the results in Figure 4. The smooth-

ing has e�ectively prevented the solutions of the preference based

methods from being dominated by the LS method, while at the same

time aligning them with the speci�ed preference rays. Similarly,

the solution frontier of EC-DBGD is now not dominated by that of

EC-AL.
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Table 3: Metrics on MSLR for bi-objective and tri-objective experiments. “orig” refers to SLA and original versions of WC /

EPO / WC-MGDA / EC-DBGD, including EC-AL. “ma” refers to LS and moving average version of them. Bold numbers mean

statistical signi�cance between orig and ma. Red number refers to a single winner (signi�cance vs. all others) for each type.

(a) MSLR dataset (2-obj)

MWL (test) HVI (train cost) HVI (test NDCG)

orig ma gain% orig ma gain% orig ma gain%

Preference based

SLA/LS 2.24 2.09 -6.7% 3.51 3.55 1.0% 0.93 0.96 2.2%

WC 5.08 1.97 -61.7% 3.40 3.55 4.5% 0.95 0.96 2.1%

EPO 2.55 2.02 -20.7% 3.51 3.56 1.4% 0.95 0.97 1.6%

WC-MGDA 2.02 1.93 -4.6% 3.53 3.57 1.0% 0.96 0.97 0.9%

EC method

EC-AL – – – 3.52 – – 0.97 – –

EC-DBGD – – – 3.47 3.52 1.5% 0.95 0.97 1.8%

(b) MSLR dataset (3-obj)

MWL (test) HVI(train cost) HVI(test NDCG)

orig ma gain% orig ma gain% orig ma gain%

Preference based

SLA/LS 2.01 1.86 -7.5% 6.37 6.52 2.4% 0.79 0.84 7.0%

WC 10.3 1.75 -83.0% 6.00 6.57 9.4% 0.81 0.89 9.4%

EPO 2.46 1.90 -23.0% 6.45 6.61 2.4% 0.87 0.88 1.7%

WC-MGDA 1.88 1.74 -7.6% 6.54 6.63 1.4% 0.88 0.90 2.0%

EC method

EC-AL – – – 6.51 – – 0.88 – –

EC-DBGD – – – 6.41 6.50 1.4% 0.84 0.87 4.1%

Table 4: Metrics on Yahoo! dataset for bi-objective and tri-objective experiments.

(a) Yahoo! dataset (2-obj)

MWL (test) HVI(train cost) HVI(test NDCG)

orig ma gain% orig ma gain% orig ma gain%

Preference based

SLA/LS 91.7 86.2 -6.0% 3.28 3.32 1.2% 0.94 0.95 1.9%

WC 87.3 81.0 -7.3% 3.28 3.34 1.9% 0.95 0.96 0.9%

EPO 107.3 107.4 0.1% 3.16 3.16 0.0% 0.87 0.87 -0.1%

WC-MGDA 85.4 80.2 -6.1% 3.30 3.35 1.4% 0.95 0.96 0.7%

EC method

EC-AL – – – 3.30 – – 0.95 – –

EC-DBGD – – – 3.29 3.31 0.7% 0.95 0.95 0.4%

(b) Yahoo! dataset (3-obj)

MWL (test) HVI(train cost) HVI(test NDCG)

orig ma gain% orig ma gain% orig ma gain%

Preference based

SLA/LS 70.6 66.7 -5.5% 6.14 6.23 1.4% 0.84 0.88 5.2%

WC 72.9 60.5 -17.0% 6.24 6.40 2.5% 0.88 0.91 3.3%

EPO 82.1 82.0 -0.1% 5.91 5.90 -0.1% 0.73 0.73 -0.2%

WC-MGDA 66.4 60.3 -9.3% 6.31 6.41 1.7% 0.89 0.91 1.9%

EC method

EC-AL – – – 6.38 – – 0.89 – –

EC-DBGD – – – 6.34 6.39 0.7% 0.89 0.90 0.3%

Table 5: Metrics on E-commerce dataset for bi-objective and tri-objective experiments.

(a) E-commerce dataset (2-obj)

MWL (test) HVI (train cost) HVI (test NDCG)

orig ma gain% orig ma gain% orig ma gain%

Preference based

SLA/LS 2.14 2.14 -1.7% 2.89 2.90 0.6% 0.94 0.95 1.27%

WC 15.7 2.05 -86.9% 2.65 2.94 11.0% 0.93 0.98 5.39%

EPO 6.15 2.22 -63.9% 2.85 2.90 1.7% 0.94 0.96 2.18%

WC-MGDA 5.93 2.03 -65.9% 2.86 2.96 3.3% 0.97 0.98 1.03%

EC method

EC-AL – – – 2.82 – – 0.97 – –

EC-DBGD – – – 2.88 2.93 1.5% 0.97 0.98 0.7%

(b) E-commerce dataset (3-obj)

MWL (test) HVI(train cost) HVI(test NDCG)

orig ma gain% orig ma gain% orig ma gain%

Preference based

SLA/LS 1.45 1.42 -2.2% 5.14 5.21 1.4% 0.87 0.90 1.41%

WC 18.4 1.35 -92.7% 4.07 5.27 29.4% 0.86 0.93 8.41%

EPO 1.91 1.47 -23.1% 5.10 5.16 1.2% 0.91 0.93 1.73%

WC-MGDA 5.83 1.34 -76.9% 4.99 5.31 6.3% 0.92 0.94 2.08%

EC method

EC-AL – – – 5.00 – – 0.93 – –

EC-DBGD – – – 523 5.35 2.2% 0.93 0.95 2.7%

Table 6: Metrics on smaller Istella LETOR dataset for bi-objective and tri-objective experiments.

(a) Istella-S LETOR dataset (2-obj)

MWL (test) HVI (train cost) HVI (test NDCG)

orig ma gain% orig ma gain% orig ma gain%

Preference based

SLA/LS 2.24 1.88 -16.2% 3.88 3.89 0.5% 0.89 0.92 3.2%

WC 8.66 1.64 -81.1% 3.75 3.87 3.3% 0.85 0.91 7.2%

EPO 4.48 1.72 -61.6% 3.84 3.89 1.5% 0.89 0.92 3.8%

WC-MGDA 2.21 1.60 -27.6% 3.85 3.88 0.9% 0.89 0.92 3.3%

EC method

EC-AL - - - 3.84 - - 0.87 - -

EC-DBGD - - - 3.83 3.87 1.0% 0.87 0.89 2.6%

(b) Istella-S LETOR dataset (3-obj)

MWL (test) HVI (train cost) HVI (test NDCG)

orig ma gain% orig ma gain% orig ma gain%

Preference based

SLA/LS 2.89 2.39 -17.3% 7.58 7.66 1.0% 0.72 0.78 8.9%

WC 40.17 1.94 -95.2% 6.22 7.56 21.6% 0.58 0.78 34.3%

EPO 2.43 1.97 -18.7% 7.59 7.67 1.2% 0.77 0.80 3.8%

WC-MGDA 2.57 1.90 -26.2% 7.50 7.59 1.1% 0.73 0.79 7.6%

EC method

EC-AL - - - 7.62 - - 0.75 - -

EC-DBGD - - - 7.57 7.66 1.1% 0.72 0.77 6.0%

4.3 Quantitative Evaluation

We quantify the improvement of employing MA over the vanilla

MOO method on two metrics: MWL (de�ned in section 3.2.4) for

preference based methods, and Hypervolume Indicator (HVI) [1] for

all methods. The MWL quanti�cation (lower is better) combines

two aspects of an MOO method: 1) the cost vector’s alignment with
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Table 7: Metrics on Istella LETOR dataset dataset for bi-objective and tri-objective experiments.

(a) Istella LETOR dataset (2-obj)

MWL (test) HVI (train cost) HVI (test NDCG)

orig ma gain% orig ma gain% orig ma gain%

Preference based

SLA/LS 6.26 4.79 -23.4% 3.90 3.93 0.6% 0.86 0.90 4.4%

WC 61.05 3.93 -93.6% 3.59 3.90 8.7% 0.80 0.90 11.5%

EPO 31.72 4.31 -86.4% 3.87 3.92 1.2% 0.88 0.90 2.9%

WC-MGDA 25.67 3.82 -85.1% 3.86 3.91 1.3% 0.86 0.90 5.3%

EC method

EC-AL – – – 3.84 - - 0.83 - -

EC-DBGD – – – 3.86 3.89 0.9% 0.84 0.85 2.1%

(b) Istella LETOR dataset (3-obj)

MWL (test) HVI (train cost) HVI (test NDCG)

orig ma gain% orig ma gain% orig ma gain%

Preference based

SLA/LS 2.79 2.36 -15.5% 7.91 7.93 0.2% 0.68 0.73 7.8%

WC 36.64 2.05 -94.4% 7.79 7.92 1.7% 0.58 0.73 25.7%

EPO 2.90 2.18 -24.8% 7.87 7.91 0.5% 0.73 0.77 5.6%

WC-MGDA 3.76 2.03 -46.1% 7.91 7.92 0.1% 0.68 0.74 8.1%

EC method

EC-AL - - - 7.88 - - 0.66 - -

EC-DBGD - - - 7.89 7.90 0.0% 0.68 0.69 0.5%

the preference ray and 2) its closeness to the 0 cost vector, which

is a utopia solution. Whereas, the HVI1 metric (higher is better)

quanti�es how closely the entire PF is approximated using all the

solutions generated from equi-distributed trade-o� speci�cations.

We conduct paired t-test (signi�cance level 0.05) on repeated ran-

domized experiments to establish the statistical signi�cance of the

improvement due to MA. The t-test pairing for MWLmetric is done

by multi-indexing an observation from the Cartesian product of 3

sets (variables): 1) the set of all relevance label tuples (bi-objective

and tri-objective cases), 2) the set of all preferences, and 3) ran-

dom seed. Whereas, the t-test pairing for HVI metric is done by 2

variables: 1) the set of all relevance label tuples (bi-objective and

tri-objective cases), 2) random seed.

We report in Table 3, 4, 5, 6 and 7 bi-objective and tri-objective

results on MSLR, Yahoo!, E-commerce, Istella-S and Istella LETOR

dataset, respectively. The e�ect of smoothing is clear. For all cases,

the gain due to smoothing is signi�cant for all metrics. Notably,

for bi-objective cases, it bene�ts WC signi�cantly – helping it to

become 2nd best model behind WC-MGDA. WC-MGDA worked

well even without MA. When it failed for E-commerce dataset, MA

helped a lot and made it the best model for all metrics. Overall,

WC-MGDA showed best performance in MWL and competitive

performance in HVIs. For EC methods, EC-DBDA with MA works

at least as competitive as EC-AL. However, WC-MGDA / EC-DBDA

requires extra computation of the generating gradient matrix while

WC / EC-AL does not. Hence, users can choose either method

based on the cost-e�ciency trade-o�. Moreover, results from the

tri-objective cases further support our conclusion.

4.4 Exploring PF around a Reference Model

We used the LS model with an early stopping point of 50 as the

reference model and generated equi-distributed preferences. We

then applied the WC and WC-MGDA methods to this setting. It is

worth noting that it is simple to modify the WC method to handle a

reference model by subtracting the cost of the reference model. The

comparison between WC and WC-MGDA can be seen in Figure 7.

Table 8 shows the results of the reference point-based methods (WC-

MGDA and WC) in terms of MWL and HVI. As MA demonstrated

better performance, we only used it in the methods. It is evident

that WC-MGDA outperforms WC, which is consistent with the

visualization in Figure 7. This use case enables us to automatically

1Note, when computing HVI on cost, we scale each cost by the worst performance of
single objective methods, so the HVI is not in�uenced by di�erent scales of costs.

Table 8: Metrics on preference with reference points.

dataset E-commerce MSLR

metric MWL HVI(cost) HVI(ndcg) MWL HVI(tr) HVI(ndcg)

WC-MA -7.1e-2 8.9e-3 8.0e-4 -1.6e-1 5.1e-2 3.9e-3

WC-MGDA-MA -8.9e-2 1.3e-2 9.3e-4 -1.9e-1 6.2e-2 4.4e-3

gain (%) -27 50 16 -19 21 14
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Figure 7: Exploring PF from a reference model (black dot)

on E-commerce dataset.

update production models using a fresh dataset, ultimately leading

to improved performance across all objectives.

5 CONCLUSION AND FUTUREWORK

We present a comprehensive framework for Multi-Label Learn-

ing to Rank that integrates any �rst-order gradient-based MOO

algorithm to train a ranking model. Our framework incorporates

three distinct trade-o� speci�cations and implements a systematic

approach to preserve the relative ranking quality with regards to

various relevance criteria. Through a thorough evaluation of multi-

ple state-of-the-art MOO algorithms, we demonstrate the e�cacy

of our framework by testing it on four publicly available datasets

and one E-commerce dataset.

Our framework for MLLTR can be enhanced in several ways as

further research. Firstly, the current pairwise cost can be extended

to list-wise cost to improve performance. Secondly, one can inves-

tigate the use of non-convex surrogates, which have been shown

to approximate the NDCG metric more e�ectively than list-wise

costs (as per [3]). Thirdly, more MOO algorithms can be integrated

to further re�ne and optimize our framework. Moreover, we will

also study the online and o�ine performance for our proposed

algorithms in production search engine [39]. We will make the

source code public available.
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A EXPERIMENTS

A.1 Datasets and Experimental Settings

A.1.1 Yahoo! Learning to Rank Dataset. We experimented on Ya-

hoo! Learning to Rank [7] challenge dataset with 36K queries. Each

query-url pair is represented by 700 features. Although these fea-

tures are engineered (not learnt), their descriptions, however, are

not publicly released. Therefore, we selected several labels to use

as additional objectives. Speci�cally, we selected features that have

more than 5 levels of values, then chose the ones that were least

correlated among each other. The selected labels are [‘0’, ‘18’, ‘22’,

‘39’, ‘92’]. Details can be seen in Figure 9. In total, we selected 5

objectives including the original relevance label, and created 15

bi-objectives and 10 tri-objective cases. The generation of prefer-

ence and constraints follows the same strategy explained in MSLR-

WEB30K. Note as we saw cost vanishing behavior coming from

NDCG computation within LambdaRank due to low granularity,

we use RankNet cost [5], which is the pairwise cost without NDCG

factors. For tuning the model hyperparameters, we followed a simi-

lar strategy as in MSLR-WEB30K, and selected 600 trees and 0.25

learning rate. We used the original training and test data for our

experiment.

A.1.2 Istella-S and Istella LETOR Datesets. We also ran experi-

ments on Istella-S LETOR dataset [20] and Istella LETOR dataset

[10], where the former is a smaller sample of the later dataset. Each

query-url pair is represented by 200 features. Although these fea-

tures are engineered (not learnt), their descriptions, however, are

not publicly released. Therefore, we selected several labels to use

as additional objectives. Speci�cally, we selected features that have

more than 5 levels of values, then chose the ones that were least

correlated among each other. The selected labels are [‘0’, ‘11’, ‘194’,

‘203’, ‘214’]. Details can be seen in Figure 10. In total, we selected

5 objectives including the original relevance label, and created 4

bi-objectives cases. The generation of preference and constraints

follows the same strategy explained in MSLR-WEB30K. For tuning

the model hyperparameters, we followed a similar strategy as in

MSLR-WEB30K, and selected 1000 trees and 0.05 learning rate. We

used the original training and test data for our experiment.

Experiment results: Figure 8 shows the results of one run for

Istella LETOR dataset. We plot the preference based methods and

n−Constraint method separately to avoid overcrowding the �gures.

Moreover, both their respective trade-o� speci�cations are di�erent,

further justifying our decision of separate �gures.

Among the preference based methods, �rst we observe that

the performance of LS and SLA are similar, from both the aspects

of dominance and preference compliance w.r.t. the other MOO

methods. This is expected as they are probabilistically equivalent

[6]: expected cost of SLA is same as LS. However, in practice, the

solutions of LS slightly dominate that of SLA in the cost space,

which translates to a signi�cant dominance in the NDCG space.

Next, we observe a similar relation among WC-MGDA, EPO and

CS. The solutions of WC-MGDA either, in most cases, dominate

or stay non-dominated w.r.t. to the solutions of EPO Search and

CS. The dominance is apparent in the cost space. Solutions from all

methods have stricter compliance to the preferences than that of

LS and SLA.
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Figure 8: Results from four bi-objective experiments on

Istella LETOR dataset. Figures 8a and 8c compare among

the preference based methods, viz., LS, SLA, CS, and EPO

Search. Figures 8b and 8d show results for n−Constraint. For
each experiment, we show the training costs and validation

NDCG@5 for corresponding labels. Colored lines and points

represent di�erent trade-o� speci�cations and the corre-

sponding solutions, respectively.
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Figure 10: Objectives selection for Istella LETOR dataset. We

plot the histogram of the standard deviation of the feature

per query group. We then select the features that have the

most diverisi�ed values per query group.

0.0 0.5 1.0 1.5
0

250

0

0.0 0.2 0.4
0

250

2

0.0 0.2 0.4
0

250

4

0.0 0.2 0.4 0.6
0

250

8

0.0 0.2 0.4
0

500

9

0.0 0.2 0.4
0

1000
11

0.0 0.2 0.4
0

500
12

0.5 0.0 0.5
0

1000
13

0.0 0.2 0.4
0

250

15

0.0 0.1 0.2 0.3
0

250

18

0.0 0.2 0.4
0

500

19

0.0 0.2
0

250

22

0.0 0.2 0.4
0

1000
24

0.0 0.1 0.2 0.3
0

250
28

0.5 0.0 0.5
0

1000
30

0.0 0.2 0.4
0

250

31

0.0 0.2 0.4
0

250

33

0.0 0.2 0.4
0

250
38

0.0 0.2 0.4 0.6
0

500
39

0.0 0.2 0.4
0

250
44

0.0 0.2 0.4
0

500

46

0.0 0.2 0.4
0

500

55

0.0 0.2 0.4 0.6
0

250

56

0.0 0.2 0.4 0.6
0

500
58

0.0 0.2 0.4 0.6
0

250

62

0.5 0.0 0.5
0

1000
64

0.0 0.2 0.4
0

250

67

0.0 0.2 0.4 0.6
0

500
70

0.0 0.2 0.4
0

250

71

0.0 0.2 0.4
0

250
75

0.0 0.2 0.4
0

250

82

0.0 0.2 0.4
0

250

84

0.0 0.2 0.4
0

500
86

0.0 0.2 0.4
0

500

87

0.5 0.0 0.5
0

1000
91

0.0 0.2
0

250

92

0.0 0.2 0.4 0.6
0

500
95

0.0 0.2 0.4
0

250

96

0.0 0.2 0.4
0

250

97

0.0 0.2 0.4
0

250

99

Figure 9: Objectives selection for Yahoo! Learning to Rank

dataset. We plot the histogram of the standard deviation of

the feature per query group. We then select the features that

have the most diverisi�ed values per query group.

For n−Constraint method, an equidistributed trade-o� speci�-

cation (the upper bounds) in the cost space does not lead to an

equidistributed solution frontier in the NDCG space. However, this

discrepancy is problem dependent, and should be attributed to the

loose approximation of RankNet or LambdaRank [4] cost to NDCG

metric, but not to the n−Constraint method. The MOO method

complies to the given trade-o� speci�cations in the cost space.
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