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ABSTRACT

In Learning-to-Rank (LTR) problems, the task of delivering relevant

search results and allocating fair exposure to items of a protected

group can con�ict. Previous works in Fair LTR have attempted to

resolve this by combining the objectives of relevant ranking and

fair ranking into a single linear combination, but this approach

is limited by the nonconvexity of the objective functions and can

result in suboptimal relevance in ranking outputs. To address this,

we propose a solution using Multi-Objective Optimization (MOO)

algorithms. We extend these algorithms to querywise MOO to

reduce the exposure disparity, not only on average but also at the

query level. Interestingly, for moderate fairness requirements, it

improves the relevance of ranking instead of deteriorating. We

attribute this improvement to the bene�ts of multi-task learning

and study the e�ect of fair ranking on the relevant ranking task.

Moreover, we signi�cantly improve the computational e�ciency

compared to previous methods by using the Gumbel max trick to

sample the Plackett-Luce distribution. We evaluate our proposed

methods on three real-world datasets and show their improvement

in relevance ranking over state-of-the-art solutions.

CCS CONCEPTS

• Computing methodologies→Multi-task learning; • Infor-

mation systems→ Learning to rank; •Mathematics of com-

puting→ Nonconvex optimization.
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1 INTRODUCTION

Search ranking systems have become a fundamental aspect of mod-

ern society. Users and producers from virtually every economic

strata use these systems to search and distribute information, media,
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food, products, services, employment, and even social connections.

The success of the entities being searched is largely determined

by their placement in the ranking, which highlights the signi�cant

economic and social in�uence that ranking algorithms hold.

The Learning to Rank (LTR) algorithms are trained on labels,

such as purchase decisions, dwell time, click data etc., to assign a

relevance score and rank the candidates/items. However, candidates

from minority groups are more sensitive to relevance scores than

those from dominant groups, e.g., in job search [13] and web search

[37]. Additionally, the training data used for relevance scores is

susceptible to position bias, which exacerbates the disparity in

exposure and makes popular items even more popular.

To address this issue, the research in fair ranking has burgeoned

recently, aiming for proper representations of di�erent groups by

providing them su�cient presence across all the ranking positions

[5]. The fairness in exposure may be imposed itemwise, called as

individual fairness, or groupwise, called as group fairness. In this

research, we focus on group fairness. In fair LTR [37, 47, 44, 25,

18], in addition to ranking relevance, an additional objective is

introduced to allocate fair exposure for the protected groups (based

on gender, race, income level, etc.), who are underrepresented or

consistently relegated to lower ranking positions.

Previous works in fair LTR have employed the Linear Scalariza-

tion (LS) approach to trade-o� between the objectives of relevant

ranking and fair ranking. However, it doesn’t guarantee �nding

a model that produces the most relevant items while satisfying a

speci�ed level of fairness due to the nonconvex nature of the ob-

jective functions. Fairness is more important in some applications,

such as job search, while relevance takes priority in others, such as

e-commerce product search portals. Suboptimal ranking relevance

could discourage platform providers, such as Google, Amazon, and

LinkedIn, from adopting fair LTR techniques, as the relevance of

search results is crucial for their business.

In this research, we address the issue of suboptimal ranking rele-

vance in fair LTR by utilizing the principles of Multi-Objective Op-

timization (MOO). Speci�cally, we employ theWeighted Chebyshev

(WC) Scalarization [41] and its recent advancements [27, 24, 23] to

achieve the best ranking models for high levels of restriction on

group exposure disparity. We aim to encourage the adoption of fair

LTR methods by demonstrating that moderate usage of fairness

tasks can enhance, not undermine, relevance in ranking. This is pos-

sible due to the inductive bias e�ect in Multi-Task Learning (MTL)

[4, 33]. To achieve this, we propose the querywise WC method that

minimize the exposure disparity at a query level. We extend it to ad-

vanced variants of WC, such as EPO Search [23, 24] andWC-MGDA

[27], and evaluate its impact on relevance ranking tasks.

https://doi.org/10.1145/3580305.3599482
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We implement the above mentioned methods e�ciently to be

applicable for large-scale real-world datasets. Our solution uses the

Gumbel max trick [40] to sample permutations e�ciently from the

Plackett-Luce (PL) ranking policy [31, 21]. In fair LTR [37, 47, 44],

objective functions are de�ned from the PL ranking policy [31, 21]

and approximated by drawing permutation samples from it. How-

ever, previous methods, which used sampling without replacement,

are not scalable to large datasets with many items per query. To

further accelerate the training, we analytically derive the double

derivatives of the PL log probabilities, which is signi�cantly faster

than using automatic di�erentiation of PyTorch [30].

In summary, we make the following contributions:

• We identify limitations of LS for combining relevance and fairness

in ranking, and propose to use WC scalarization and its modern

variants with theoretical justi�cation.

• We introduce theQuerywiseWeighted Chebyshev (QWC)method

and extend it to the modern variants of WC. We analyze its regu-

larization and inductive bias e�ects that improve the relevance

in ranking instead of deteriorating it for moderate fairness con-

straints.

• To accelerate the training of fair LTRmodels, we propose e�cient

sampling from PL distribution with the Gumbel max trick and

faster double derivative computation of objectives.

• We demonstrate the superiority of the non-querywise MOO (in

restrictive fairness conditions) and querywise MOO (in moderate

fairness conditions) over LS on three real world datasets, and the

scalability of our implementation on simulated datasets.

2 RELATED WORK

2.1 Fair Learning to Rank

Excellent reviews on the broad interdisciplinary subject of fairness

in ranking (from social, philosophical and algorithmic aspects) can

be found in [48], and on the speci�c topic of Fair LTR can be found

in [49]. There are three approaches for Fair LTR: Pre-processing

[38], where the input data to the ranking system is transformed;

Post-processing [1, 6, 35, 45, 46, 36], where �rst an LTR model

predicts the relevance scores and then the list is re-ranked based on

a fair ranking policy; and In-processing [47, 37, 44, 18, 43], where

an LTR model is trained to maximize ranking utility and minimize

unfairness. Our work focuses on the in-processing approach.

The in-processing literature can be divided based on the ranking

policy into two types: PL model [31, 21] based methods [37, 47, 44],

and Doubly Stochastic Matrix (DSM) [25, 18] based methods.

In PL model based fair LTR, [37] applies policy gradients using

the REINFORCE algorithm [43] to train the model. [44] extends this

by using unbiased estimates of relevance labels and fairness loss in

model training. [47] adopts the LTR approach of [3] considering

the group discrepancy only in the top ranking position.

In DSM based fair LTR, [25] uses a game theoretic approach,

where one player maximizes the ranking utility with fairness con-

straint and the other minimize. [18] uses a post-ranking strategy to

achieve fairness. They highlight an important issue in the de�nition

of fairness loss used in earlier methods that although improve the

overall fairness, but overlook querywise fairness.

Despite the formulation of convex objectives in DSM-basedmeth-

ods, their reliance on inference-time re-ranking limits their prac-

ticality for large-scale search platforms. The linear programming

problem to be solved at inference, with a size of $ (=2), where =
is the number of items to be ranked, can result in longer latency

that negatively impacts revenue for search platform providers. This

could deter the adoption of fair LTR, especially in scenarios where

low latency is a critical factor. To address this, we adopt PL-based

fair LTR algorithms that do not require inference-time optimization,

enabling improved ranking relevance while preserving the bene�ts

of low latency.

2.2 Multi-task Learning by Multi-Objective
Optimization

LS was predominantly used in MTL literature[33]. To show MOO

can improve MTL, [34] used the Multi-Gradient Descent Algorithm

(MGDA) [9]. However, thismethod did not have any control over the

trade-o�s among the objectives. [19] introduced a preference based

MOO algorithm to gain more control over the trade-o� solutions.

More recently, Exact Pareto Optimal (EPO) Search [24, 23] and

WC-MGDA [27] extend the WC scalarization [41] to gain precise

control over the multi-task trade-o�s. Moreover, [22] systematically

studied these multi-task learning by MOO algorithms for LTR. In

this research, we extend the WCmethod and its modern variants by

applying them separately on every query to improve the ranking

relevance.

3 BACKGROUND

3.1 Fair Learning to Rank

We summarize the main notations in Table 1.

Dataset Description: The training dataset D =

{(
x@, y@

)}#
@=1

contains information about # queries, where x@ ∈ R=@×3 repre-

sents the 3 dimensional features for =@ items and y@ ∈ Y=@ is their

relevance labels for the @th query. Set Y is the range of relevance

labels, e.g., binary {0, 1}, or ordinal ratings {0, 1, 2, 3, 4, 5}. The num-

ber of items =@ of query @ is also called as its Slate length. We drop

the subscript @ and simply use the notations x and y for = items

when the discussion is about a single query.

Metric for Relevance of a Ranking: Given = items, a ranking

f : [=] → [=] assigns the rank f (8) to item 8 . To determine the

quality of this ranking f w.r.t. the relevance labels y, we use the

Normalized Discounted Cumulative Gain (NDCG) [8] metric. As-

suming the gain of item 8 to be its relevance label ~8 , the relevance

ranking metric is de�ned as

" (y, f) = y)f�

sort(y))�
, (1)

where yf is the permutation of y according to the ranking f , sort(y)
is a sorting of the relevance labels in descending order, and � ∈ R=
is the discount vector that reduces the gain of higher ranked (less

relevant) items, e.g., Δ: =
1

log(1+: ) is the discount at rank : .

Group Exposure Discrepancy for Unfairness of a Ranking:

The exposure of an item at rank : is given by E: that decreases with

increasing rank, e.g., E: =
1

;>6 (:+1) or
1
:?

for ? ≥ 1. The exposure
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of a group � ⊂ [=] of items enjoyed by ranking f is denoted by

E� (f) =

∑
8∈� Ef (8 ) , and the discrepancy in exposure between

groups � and � ′ is given by

� (f) = E� (f)
|� | −

E� ′ (f)
|� ′ | . (2)

Another form of group discrepancies used in the literature [37,

44, 18] is only the numerator of (2), i.e., E� (f) |� ′ | − E� ′ |� |. How-
ever, this form of group discrepancy assumes the slate lengths =@
of all the queries are the same, so that the scale of this metric re-

mains same while averaging over the queries. Unfortunately, this

assumption is not practical since the slate length varies in the real

world datasets. An additional notion of an item’s merit<8 is consid-

ered in the literature, where, instead of |� |, the group exposure is

normalized by the group merit
∑
8∈�<8 in (2). Although the merit

is understood as relevance labels in some of the previous works

[37, 18], others explicitly leave it out [49]. Because, as discussed in

[48] the understanding of merit depends on subjective factors, such

as worldviews and on one’s conception of equal opportunity, that

may not be reduced to relevance labels. Therefore, we stick to the

normalized form (2) of group discrepancy due to its simplicity and

scale invariance w.r.t. slate length.

Probabilistic Ranking: In traditional LTR [20], a deterministic

scoring function 5\ : R3 → R predicts the items’ scores ~̂8 = 5\ (G8 )
for 8 ∈ [=], then a ranking f : [=] → [=] is assigned such that

higher scored items are ranked lower, i.e., f (8) < f ( 9) if ~̂8 > ~̂ 9 .

However, in deterministic ranking, it may be implausible to achieve

both higher NDCG and lower discrepancy in group exposure, since

there are only a few positions with high exposure. Therefore, in fair

LTR, a stochastic ranking system is used to measure the expected

group discrepancy over many probable rankings for the same query.

To sample a ranking f ∈ P, where P is the set of all permutations, a

probabilistic policy c is constructed from the predicted score vector

ŷ. In particular, the Plackett-Luce (PL) distribution [31, 21] is used

as the policy, wherein the probability mass of a ranking de�ned as

c (f |ŷ) =
=∏

:=1

exp
(
~̂f−1 (: )

)

∑=
;=:

exp
(
~̂f−1 (; )

) , ∀f ∈ P, PL

which assumes the ranks are assigned by sampling = items without

replacement from the softmax probability of their scores. Note, we

index the items by 8, 9 , but their ranks by :, ; .

Problem Statement: The goal of fair LTR is to learn a scoring

function 5\ whose (PL) policymaximizes the the expectedNDCG (1),

also called as Ranking Utility * (\ ), while constraining the expected
discrepancy in group exposures (2), also called as Fairness violation

� (\ ), within n > 0:

max
\

* (\ ), s.t. |� (\ ) | ≤ n, (3)

where * (\ ) = E@ [* (\ |@)] = E@
[
Ef∼c ( · |ŷq )

[
" (y@, f)

] ]
, (4)

� (\ ) = E@ [� (\ |@)] = E@
[
Ef∼c ( · |ŷq )

[
� (m@, f)

] ]
, (5)

and the scores ŷ@ = 5\ (x@). In practice, the outer expectations of

(4) and (5) are reduced to empirical expectation over the queries

available in a given dataset. Similarly, the inner expectations are

Table 1: Main notations

Notation Description

=, =@ Number of items for a generic, speci�c query @

3 Number of features of an item

x@ ∈ R=@×3 , Features of items in query @

Y Range of relevance labels, e.g., {0, 1}
y@ ∈ Y=@ , Relevance labels of items for query @

5\ , Θ Scoring function, and its parameter space

ŷ@ ∈ R=@ , Predicted scores of items of query @

.̂ Predicted scores all query-items in a dataset

x, y, ŷ Features, labels, scores of items of a generic query

f,P,S A ranking on [=], set of all rankings, a sample set

�, v Discount and bias vector of = ranked positions

",� Ranking metric, group exposure discrepancy

c Ranking policy

* , �01B Ranking utility, absolute fairness loss

* , �01B Empirical mean of* and �01B over all queries

6 Scalarization function for multiple objectives

_, n ; r Fairness weight, constraint; weights of cost vector

" , B Objective coe�cients, their smoothing factor

reduced to Monte Carlo estimates by sampling several rankings

from the (PL) distribution, because for queries with large slate

length =@ , it is infeasible to compute the true expectation over all

the =@ ! rankings. [18] highlighted that although the overall fairness

violation is constrained in (3), the querywise violations are not

constrained. Because, the positive and negative expected group

discrepancies � (\ |@) of di�erent queries cancel each other to an

overall lower violation. Therefore, to account for the querywise

fairness violations, instead of taking the absolute value of overall

expected group discrepancies as done in the literature [44, 37],

we modify the formulation in (5) to take the absolute value in a

querywise manner, i.e.,

�abs (\ ) = E@ [�abs (\ |@)] = E@
[ ���Ef∼c ( · |ŷq )

[
� (m@, f)

] ���
]
, (6)

and replace the constraint in (3) to �abs (\ ) < n . As a result of this
modi�cation, the positive group discrepancy of one query cannot

compensate for the negative value of another query.

Linear Scalarization (LS):. The constraint optimization problem

(3) is di�cult for a scoring function with high dimensional pa-

rameter space, such as Support Vector machines, gradient boosted

machines, Deep Neural Networks (DNN) etc. Therefore, it is relaxed

to the LS form[37, 47, 44, 25, 18] using a penalty weight _ for the

fairness violation:

\∗
_
= argmin

\
1 −* (\ ) + _�01B (\ ) = �_ (\ ), (7)

where the Lagrangian multiplier _ > 0 sets the priority for fairness

task for the overall training cost �_ . Although the link between _

and constraint upperbound n can be recovered after optimization

as n_ = �01B (\∗_), the direct speci�cation of n is lost in (7).

Scoring Function: We use Gradient Boosted Machine (GBM) [14]

to model the scoring function as many state-of-the-art production
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models in the industry use it. However, our development is general

and can be easily extended to other models such as DNN. A GBM

model is updated through the objective gradients w.r.t. the output

scores ŷ. As a result, we can treat the objectives * and �01B as

functions of the concatenated scores .̂ = {ŷq}#@=1. This makes the

querywise analysis in Section 4.4 easier. A GBM model consists of

) decision trees:

5 )) (G) = g\ 0 (G) −
)−1∑

C=1

[Cg\C (x), (8)

where [C is the learning rate, g\C is the C
th tree parameterized by

\C , and the full model parameter is ) = {\C })−1C=0 . The training

consists of sequentially learning these ) trees. On the C th iteration,

instead of updating the parameters by the usual gradient descent

rule ) C+1 = ) C − [C∇)�_ , where ∇)�_ is the gradient of the overall

cost in (7), in a GBMmodel, the tree g\C is learnt from the following

training data:

Dg\C =

{(
x@,∇ŷ@�_

)}<
@=1

, (9)

where the labels are gradients w.r.t. the latest scores ŷ@ = 5 C
)
(x@). In

other words, the update happens in the function space of trees, i.e.,

5 C+1
)

= 5 C
)
−[Cg\C , instead of the parameter space. Consequently, we

can analyze the ranking utility (4) and fairness violation (6) either

as functions of the scores, * (.̂ ) and � (.̂ ), or as functions of the
parameters,* () ) and � () ), depending on the context. Note, this

interpretation of the objective functions is not limited only to GBM,

as it can be generalized to any smooth parametric model through

�rst order analysis of the objectives with a small learning rate [.

3.2 Multi-Objective Optimization

We consider the vector valued cost function C := [�01B , 1 −* ]) ,
and denote a point in the objective space as c ∈ R2. Note that both
cost functions are non-negative. Therefore, the set of all attainable

cost vectors (range of C), denoted as O, is a subset of the positive

quadrant R2+ := {c ∈ R2 | 28 ≥ 0, ∀ 8 ∈ [2]}.

Partial Ordering: The positive quadrant cone R2+ is used to de�ne
a partial ordering relation on R2. For any two points 21, 22 ∈ R2,
we write 21 ≽ 22, if 21 lies in the positive cone pivoted at 22, i.e.,

21 ∈
{
22 + 2

�� 2 ∈ R2+
}
. In other words, 21 ≽ 22 ⇐⇒ 21 − 22 ∈ R + ,

making 21
:
≥ 22

:
for every : ∈ [ ]. Strict inequality c1 ≻ c2 is

written when, at least one 9 ∈ [2], 219 > 2
2
9 .

Pareto Frontier: A point c ∈ O is said to be minimal if there exists

no other point c′ ∈ O such that c ≻ c′. The Pareto Frontier (PF) of
C is de�ned as the set of all minimal points in O, which could be a

1-dimensional manifold if connected [10, 23].

In order to make fair LTR adoptable to a wide range of appli-

cations having di�erent levels of fairness requirements, the train-

ing algorithm should be able to attain the minimal cost vectors,

c∗s in R2, corresponding to a wide range of fairness constraints ns.

Because, at a minimal point with 2∗1 = n , the model achieves the

best possible ranking utility (least 2∗2) without violating the fairness
requirement. In other words, optimization algorithm should be able

to approximate the PF.
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0

Tangent &
 S

uport
S
ad

d
le P

oint

(a) Linear Scalarization

<latexit sha1_base64="FL/2fAbezFCVBV2TA82Tj9jdLIw=">AAACO3icbVDLTgIxFO3gC/EFumTTSEhcGDJjiLokunEnJvKIMCGdTgcaOu2k7RDJhL9wq3/ih7h2Z9y6twOzUOAkTU7Ouae593gRo0rb9oeV29jc2t7J7xb29g8Oj4ql47YSscSkhQUTsushRRjlpKWpZqQbSYJCj5GON75N/c6ESEUFf9TTiLghGnIaUIy0kZ76IdIjz0vuZ4Nixa7Zc8BV4mSkAjI0ByWr3PcFjkPCNWZIqZ5jR9pNkNQUMzIrVGE/ViRCeIyGpGcoRyFRbjJfegarRvFhIKR5XMO5WliXOPcnNFJZ+HmR/juYoFCpaeiZL9Nr1LKXimu9VNFCMLXO7cU6uHYTyqNYE44X+wYxg1rAtEjoU0mwZlNDEJbUHA3xCEmEtam7YOp0lstbJe2LmnNZqz/UK42brNg8KINTcAYccAUa4A40QQtgwMELeAVv1rv1aX1Z34vRnJVlTsA/WD+/oEuuOw==</latexit>

O

Pareto Front
0

r
−1 ray

Level Sets 

gWC

r
= γ

C
2

= 1 − Ū
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Figure 1: Illustration of two types of preference speci�ca-

tions depicted in the objective space. Fig 1a shows how Linear

scalarization can have non-unique Pareto optimal points for

the same preference. Among the 3 Pareto optimal cost vec-

tors, whose corresponding solutions \∗s or .̂ ∗s are stationary
points of 6LSr de�ned in (7) or (12) respectively, the green solu-

tion is neither a localminimumnor amaximum. It is a saddle

point for 6LSr , therefore cannot be attained. Fig 1b shows how

Chebyshev scalarization can attain the green optimum by

minimizing 6WC
r (13).

Multi-Gradient Combination: The MOO methods we consider

in this work, viz., WC [41], EPO Search [24, 23] andWC-MGDA [27],

are designed to approximate the PF even for non-convexMOO prob-

lems. Unlike LS, these methods adaptively combine the gradients

of both objectives:

∇ŷ@�_ = U1∇ŷ@ �01B − U2∇ŷ@* , (10)

where the combination coe�cients U1 and U2 are computed in each

iteration with the knowledge of _, the cost vector and its gradients.

Coe�icient Smoothing: [22] observed that in MOO algorithms

exhibit non-smoothness in the costs trajectories if the values of

combination coe�cients U1 and U2 vary signi�cantly in consecutive

iterations. Therefore, to reduce the oscillations in the cost trajecto-

ries, a coe�cient smoothing is applied as UC8 ← BUC−18 + (1 − B)UC8
for 8 ∈ [2], where where B ∈ [0, 1] is the smoothing factor and

treated as a hyper-parameter while training the models.

4 FAIR LEARNING TO RANK WITH MOO

4.1 Shortcomings of Linear Scalarization

Consider a generalization of LS (10) as scalar valued function 6:

6LSr (.̂ ) = A1
1

#

#∑

@=1

�01B (ŷ@) + A2
1

#

#∑

@=1

(1 −* (ŷ@)), (11)

:= A1�01B (.̂ ) + A2 (1 −* (.̂ )) . (12)

where setting the preference vector to r = [_, 1] converts the con-
strained fair LTR problem (3) to (7) in simplemanner. However, with

this simplicity one loses the direct control over the constraint up-

perbound n . For a particular _ the corresponding upper bound can

be estimated only after the optimization as n_ = � ∗
01B

:= �01B (.̂ ∗_ ),
where the optimal scores .̂ ∗

_
is obtained from the trained GBM

model, but not before optimization. Because, the location of op-

timal cost vector c∗r = [� ∗
01B
, 1 − * ∗] corresponding to r in the

objective space depends on the structure of PF, as illustrated in Fig
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1a; c∗r lies on the line with normal direction r that is both a tangent

and a support to the PF. Therefore, for non-convex MOO, LS does

not guarantee to reach every Pareto optimal solution, because not

all tangents to the PF are also supports (see chapter 4 of [2] for

detail).

4.2 Weighted Chebyshev Scalarization

In WC, the vector valued cost is scalarized to

6WC
r (.̂ ) = max

{
A1�01B (.̂ ), A2 (1 −* (.̂ ))

}
. (13)

In general, the minimal costs of WC w.r.t. r satis�es A1�01B (.̂ ∗r ) =
A2 (1 −* (.̂ ∗r )), which can be deduced by analyzing the level sets of

WC scalarization. ItsW−level setLW = {c ∈ R2 | max9∈[2] A 92 9 ≤ W}
can also be written as {Wr−1} − R2+, i.e., the negative quadrant piv-
oted at Wr−1. Therefore, if LW ∩ O is a singleton set then the cor-

responding solution is .̂ ∗r . In other words, the optimal vector c∗r
lies on the r−1 := [A−11 , A−12 ] ray, as illustrated in Figure 1b. This

property of WC gives a direct relation between the fairness weight

_ and the fairness violation upper bound n .

Proposition 4.1. Let W = min �01B (.̂ ) be the minimum value of

absolute fairness violation when optimized without the ranking utility.

Then, irrespective of the structure of the PF, the optimal solution of

WC scalarization (13) w.r.t. r = [_, 1], where _ ≤ 1
W , guarantees that

�
∗
01B = n_ ≤ 1

_
.

In addition to the above guarantee, WC also guarantees reacha-

bility to every solution in the PF, even for non-convex MOO [26].

Note, any value of n ∈ [W, 1W ] guarantees the existence of a Pareto
optimal model on the PF. Let cC = [�01B , (1 − * )] at iteration C .
Then the multi-gradient combination coe�cients (10) of WC are

UC9 =

{
A 9 , if 8 = argmax8∈{1,2} A82

C
8

0, otherwise
, for 9 = 1, 2. (14)

Variants of WC Scalarization: Recent extensions to the WC

method, such as EPO Search [24, 23] and WC-MGDA [27] also

reach the preference speci�c Pareto optimal solution of 6WC
r (13).

To �nd the combination coe�cients for the gradients, EPO Search

solves a Quadratic Programming (QP) problem whereas WC-MGDA

solves a Second Order Cone Programming (SOCP) problem in each

iteration. We provide a brief explanation of EPO Search in the

following and WC-MGDA in Appendix C.

Exact Pareto Optimal Search: In this method [23], the com-

bination coe�cients are decided based on an anchor direction a

to control the �rst order movement in the objective space. Let

� = [∇�01B ,−∇* ] and cC = [�01B , (1 −* )] at iteration C , then the

coe�cient is computed as

" C = argmin
U8≥0,8∈[2]

∥�)�" − aC ∥22, s.t. U1 + U2 = 1, (15a)

and aC =

{
cC −
−−→
r−1⟨cC ,

−−→
r−1⟩, if cosine(cC , r−1) ≤ `,

cC , otherwise
(15b)

where
−−→
r−1 is the ℓ2 normalized vector, and ` is a hyperparameter

close to 1. Simply put, when the cost vector is far from the pref-

erence ray (small cosine similarity), the anchor direction aC is the

orthogonal error from c to r−1. On the other hand, when the cost

reaches close to r−1, the anchor is simply the cost vector. The search

direction �" C results in a �rst order movement along �)�" C in

the objective space as cC − [�)�" C for a small learning rate [. As

a result, when cC is far from r−1, the next cost vector cC+1 moves

closer to the r−1 ray, and when cC is near to r−1, it moves closer to

the PF (see [23] for details).

4.3 Querywise Weighted Chebyshev

If fairness objective is considered as a regularization in the model

training for the LTR task, then the WC formulation (13) o�ers

better regularization than LS (7), because WC searches for only

those models whose cost vectors ideally (practically) lie on (near)

the r−1 ray. However, WC achieves this on average: the mean of all

querywise cost vectors lies on r−1.
We introduce an extension of the WC method that promotes

the cost vectors of individual queries to lie on r−1, which can fur-

ther regularize the model. We propose the Querywise Weighted

Chebyshev (QWC) scalarization, de�ned as

6
&,�
r (.̂ ) := 1

#

#∑

@=1

max
{
A1�01B (ŷ@), A2 (1 −* (ŷ@))

}
, (16)

where the max operator is taken inside the empirical expectation

over the queries. Unlike the multi-gradient combination coe�cients

of WC in (14), in QWC, it is done querywise, where UC@,1 and U
C
@,2

are set using the querywise cost vectors cC@ = [�01B (ŷ@), 1−* (ŷ@)]
for all @ ∈ [# ].

Variants of QWC Scalarization: Similar to the variants of WC,

we extend QWC to Querywise EPO Search and Querywise WC-

MGDA. In querywise EPO Search, instead of solving one QP (15), #

QP problems are solved in each iteration using the querywise gra-

dients �@ = [∇�01B (ŷ@),−∇* (ŷ@)] to obtain the " C@ for @ ∈ [# ].
Similarly, in Querywise WC-MGDA, # SOCP problems are solved

in each iteration. However, these QP and SOCP based querywise

methods cannot be scaled to real world datasets having a large

number of queries. Therefore, we develop a matrix inversion based

EPO Search, and extend it to the querywise approach, where solv-

ing QPs can be avoided. This makes the computation of querywise

coe�cients " C@s parallelizable, and hence scalable to large datasets.

Matrix Inversion based EPO Search: To make the querywise

EPO Search scalable, we propose a simpli�cation of the EPO Search

algorithm. For the non-querywise approach, instead of solving the

QP in (15), we obtain the coe�cients by

" C = (�)�)−1aC , (17)

and then normalize the " C . This formulation assumes that the con-

straint U1 +U2 = 1, which was inherited from the MGDA algorithm

[9], is replaced by the constraint ∥" ∥2 = 1. For querywise EPO

Search, we parallelize matrix inversion of�)@�@ for @ ∈ [# ] to e�-

ciently compute the coe�cients as " C@ = (�)@�@)−1aC@ , where the
querywise anchor direction aC@ is computed similar to (15b) using

cC@ . We avoid the corner case of having a negative a coe�cient in

" C@ , by replacing them with the coe�cients of the QWC for the

corresponding query. However, we found that the anchor directions
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and gradients are robust to such occurrence due to the normalized

formulations of both the ranking utility and fairness loss.

4.4 Querywise vs. Non-Querywise WC

To analyze their di�erences, we �rst formalize the range O@ ⊂ R2
of querywise cost C(·|@) = [�01B (·|@), 1−* (·|@)]) . Given a query @,
the ranking utility and fairness violation without the Monte Carlo

approximation can be written as

* (ŷ@) = ⟨c (·|ŷ@), " (y@, ·)⟩ (18)

� (ŷ@) = ⟨c (·|ŷ@), � (m@, ·)⟩, (19)

where c (·|ŷ@) ∈ R=@ ! is a vector in the =@ ! − 1 dimensional proba-

bility simplex. Recall, c (·|ŷ@) is a probability mass function over

all possible permutations/rankings of =@ items. Similarly, "@ :=

" (y@, ·) and �@ := � (m@, ·) are vectors in R=@ !, which are the

ranking metrics and group exposure discrepancies respectively for

all possible rankings of =@ items. The range of PL function given by

c (·|R=@ ) :=
{
c (·|ŷ@) ∈ R=@ !

��� ŷ@ ∈ R=@
}

(20)

is an=@−1 dimensional hypersurface [42] in the probability simplex.

If C(·|q) is treated as a function of the scores, then the querywise

range O@ can be realized by �rst projecting c (·|R=@ ) onto the 2d

hyperplane of ranking metric vector "@ and group discrepancy

vector �@ , then applying the necessary transforms, such as or-

thogonalizing "@�@ , converting to 1 −* (ŷ@) and |� (ŷ@) | for all
ŷ@ ∈ R=@ . However, if C(·|@) is treated as a function of the model

parameters \ , then O@ requires the projection of c (·|Ŷ@) onto the

"@�@ hyperplane, where Ŷ@ := {5\ (x@) ∈ R=@ | \ ∈ Θ} ⊂ R=@ is

the range of scoring function when treated as a function of \ ∈ Θ.

Update Directions in Objective Space: The di�erence between

the querywise and non-querywise WC methods can be realized

by juxtaposing the ranges O@ for @ ∈ [# ] on to a common R2

objective space, and analyzing the �rst order movements of the

querywise cost vectors for a particular model parameter; this is

depicted in Figure 2. In WC, the update direction of the mean cost

vector c̄ is inherited to all the queries. However, in QWC the update

direction is decided for individual queries.

Regularization in Parameter Space: We denote the range of

overall non-querywise cost C = [�01B , 1 −* ]) by O, which is the

pointwise mean of all O@ for @ ∈ [# ]. Given a preference vector r,

we analyze how the two methods constrain the parameter search

space Θ by de�ning three sets:

Θ
r := C

−1 (O ∩ −→' ), where ray
−→
' := {Br−1 | B > 0}, (21)

Θ
r
@ := C−1@ (O@ ∩

−→
' ), where C@ := C(·|@), (22)

Θ
r
Q
:= ∩@∈Q Θ

r
@, where Q is set of all queries. (23)

Θ
r and Θr

Q
are restrictions on the optimal model by WC and QWC.

Proposition 4.2. The restriction on the optimal model o�ered by

QWC is stricter than that of WC, i.e., Θr
Q
⊂ Θ

r.

Note, the LTR problem is an ill-posed problem. Because, di�erent

permutations of a list of items can have the same NDCG value due

to course grained relevance labels, e.g., binary or �ve star ratings.

0

r
−1 ray

C̄

r1c̄1 > r2c̄2

C1 = |F(ŷ) |

C2 = 1 − U(ŷ)

(a) WC

0

r
−1 ray

C1 = |F(ŷ) |

C2 = 1 − U(ŷ)

(b) QWC

Figure 2: Illustration of the movement directions of the

queries in the objective space in one iteration. In WC, all

the queries minimize the same objective (�1 in this case)

as decided by the relative values of the mean cost vector. In

QWC, the objectives for optimization are chosen individually

by the queries.

Proposition 4.2 formalizes how QWC tackles the ill-posedness with

more regularization than WC by comparing Θr
Q
and Θ

r. An empty

set Θr
Q
is a possibility, wherein the minimal solution may not exist.

Inductive Bias: In QWC, the in�uence of fairness task on the rank-

ing task, i.e., whether reducing |� | increases* or not, is captured

by the angle between the two vectors in R=@ !, group discrepancies

� (·|@) and ranking metrics" (·|@). Since* is maximized and �01B
is minimized, when �@ is orthogonal to"@ , the positive in�uence

of the fairness task is maximum. Note, the ranking metric vector

" (·|@) (NDCGs) lies in the positive orthant while the group discrep-
ancy vector � (m@, ·) does not lie in it, which facilitates a higher

angle between the vectors. However, such treatment is not apparent

in the WC method as the update happens for the mean cost.

5 SCALABLE IMPLEMENTATION

5.1 Gradient Approximation

Similar to [37], we approximate the gradient using the log-derivative

trick, originally proposed in the REINFORCE algorithm [43], over a

subset S ⊂ P of permutations sampled from the (PL) distribution:

m* (ŷ)
m~̂8

=

∑

f∈P

mc (f |ŷ)
m~̂8

" (~, f) = Ef
[
m log(c (f |ŷ))

m~̂8
" (y, f)

]
(24)

⇒ m̂*

m~̂8
=

1

|S|
∑

f∈S

m log(c (f |ŷ))
m~̂8

" (y, f). (25)

The gradient of absolute fairness violation loss �01B (6) for a query

(inner expectation in (6)), requires the sign of non-absolute fairness

violation � (inner expectation in (5)):

m�01B (ŷ)
m~̂8

= sign(� (ŷ)) Ef
[
m log(c (f |ŷ))

m~̂8
� (m, f)

]
(26)

=⇒
�m�01B
m~̂8

= sign
(
�� (ŷ)

) 1

|S|
∑

f∈S

m log(c (f |ŷ))
m~̂8

� (m, f), (27)
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Table 2: Descriptions of the datasets: number queries (train/test/valid), slate lengths (min/median/max), number of features,

features used for grouping, and grouping method.

Dataset Queries Slate length Features Grouping Attribute Groups

German 500/500/500 20/20/20 58 Purpose of loan applicant radio/television

MSLR-WEB30K 18.9K/6.3K/6.3K 1/243/1251 136 Document body length 30 percentile threshold

E-Commerce 735K/155K/187K 1/79/309 60 Product price 40 percentile threshold

where �� (ŷ) = 1
|S |

∑
f∈S � (m, f). When training with multiple

queries, this sign should be computed for every query separately.

5.2 Hessian Diagonal Approximation

In addition to the gradient information, morden GBM based pack-

ages, such as LightGBM [16] and XGBoost [7], require the second

order derivatives w.r.t the scores for e�cient training. We approx-

imate the double derivatives by di�erentiating the estimates of

gradients in (25) and (27) as

m

m~̂8

m̂*

m~̂8
=

1

|S|
∑

f∈S

m2 log(c (f |ŷ))
m~̂28

" (y, f), and (28)

m

m~̂8

�m�01B
m~̂8

= sign
(
�� (ŷ)

) 1

|S|
∑

f∈S

m2 log(c (f |ŷ))
m~̂28

� (m, f) (29)

respectively. Another method is to apply the log-derivative trick

twice and then approximate with a sample set. However, we found

this method does not improve the training (see Appendix B). Instead

of using the modern autodi� packages we analytically derived the

double derivatives of the log-probabilities, which makes the com-

putation signi�cantly faster. Similar to the gradient combination in

(10), we combine (28) and (29) with the U coe�cients.

5.3 Sampling with Gumbel Max Trick

The role of sampling is signi�cant in fair LTR since the estimation of

objectives, gradients and hessian-diagonals require many ranking

samples. All PL policy based previous works in fair LTR literature

[37, 44] have used the de�nition of (PL), sampling without replace-

ment, to sample a permutations. However, this is not scalable to

practical scenarios, since the for loop cannot be parallelized over =.

We avoid the trap of sampling without replacement by the Gum-

bel max trick [40]. A sample ranking can be simply obtained by

adding Gumbel random noises to the scores, and then sorting the

noisy scores [17]. In particular, if Z8 ∼ Gumbel(0, 1) := 4−4−Z for

8 ∈ [=] random noises distributed according to the Gumbel distri-

bution, then (PL) probability of f = argsort(ŷ + ' ) is the same as

the order statistical probability of ŷ + ' , i.e.,

c (f |ŷ) = %
(
~̂f−1 (1) + Zf−1 (1) > · · · > ~̂f−1 (=) + Zf−1 (=)

)
. (30)

With this trick we can e�ciently draw many samples, resulting in

a larger S to improve the approximations of objectives, gradients

and hessian-diagonals in a scalable manner.

6 EXPERIMENTS

We compare the querywise and non-querywise MOO methods

proposed in Section 4 against the traditional approach of Linear

Scalarization (LS) for training Fair LTR models. Although previous

works, such as [37, 44, 47], di�er in their exact formulation of

fairness loss and pre-processing techniques for data debiasing, all of

them essentially used LS to combine objectives. Our implementation

uses the LightGBM package [15] for the GBM model and PyTorch

[30] for derivatives computation.

6.1 Setup

Datasets:We used three datasets: German Credit [12], Microsoft

Learning to Rank Dataset (MSLR-WEB30k) [32], and another E-

Commerce dataset similar to [39, 29, 28]. An overview of these

datasets are given in Table 2.

• The German credit Dataset is originally a binary classi�cation

dataset consisting of 1000 loan applicants, where the labels are

their creditworthiness. Similar to [37], we convert it to an LTR

dataset by constructing 500 queries from train, test, and valida-

tion sets, respectively, where each query consists of 20 randomly

selected applicants such that the ratio of non-creditworthy indi-

viduals to creditworthy individuals is 9:1. The grouping is done

by a binary feature indicating whether the purpose of the loan

applicant is radio or television. The ratio of applicants in two

groups is around 8:2.

• The MSLR-WEB30k dataset contains a large number of queries

from Bing with manually judged relevance labels for retrieved

webpages. Unlike the previous works in fair LTR [44, 37], we

do not pre-process the data to have �xed slate lengths for every

query, because it does not re�ect the real world scenario. Instead

we use the original dataset to showcase the scalability of our

methods. We group the documents based on body length of the

webpages and threshold at 30th percentile of the overall dataset.

We selected the threshold such that not many queries will be left

out of having both the groups: only 467 out of ∼19K queries in

the training dataset did not have both groups.

• The E-commerce dataset was collected in 2021. Each query is

associated with a set of products impressed by customers in a

search session. The query-product dependent features are con-

structed from information such as product description, their

textual matches with the query, and customer’s purchase deci-

sion. We sampled ∼735K queries for training, ∼155K for testing

and ∼187K for validation. The grouping was done based on the

product price, so that the disparity in exposure of higher priced

and lower priced products can be minimized.

Competing Algorithms: In non-querywise MOO, we tested

four methods on all three datasets: WC [41], WC-MGDA [27], the

QP based EPO Search [23] (EPO-QP), and our matrix inversion

version based of the EPO Search (EPO).
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Table 3: Hyperparameters

Hyperparameters German MSLR-WEB30K E-Commerce

max leaf nodes 50 50 50

# of iterations 500 300 150

learning rate 0.1 0.1 0.1

Fairness weight _ [1e-5, 0.1, 1, 5, 10, 15, · · · , 80]
Smoothing factor B [0.1, 0.3, 0.5, 0.7, 0.9]

In querywise MOO, we tested only QWC, and our matrix inver-

sion based Querywise EPO Search (QEPO), in all three datasets.

The QP based QEPO-QP, and SOCP based Querywise WC-MGDA

(QWC-MGDA) are not scalable due to lack of libraries that sup-

port parallelization of thousands of separate QP or SOCP problems.

Therefore, we tested these two methods only on the small German

Credit dataset.

Hyperparameters: For fair comparison, we kept the GBDT

model parameters, such as learning rate, number of maximum leaf

nodes, and number of training iterations, consistent for all the

algorithms for a given dataset as detailed in Table 3. The varia-

tions in hyperparameters such as fairness weight _ and coe�cient

smoothing B were the same across all MOO methods.

6.2 Evaluation

Instead of strictly constraining the fairness violation for every query,

we evaluate the methods for constraining the violation for most of

the queries while maximizing the ranking cost:

max
\
* (\ ) s.t. % (�01B (\ |@) ≤ n) ≥ X, (31)

where* (\ ) = E@ [* (\ |@)] is computed empirically. The probabilis-

tic constraints are imposed empirically for preset values of n and

X . First, for a trained model \∗, we obtain the X th quantile value

of �01B (\∗ |@) over the queries in the test dataset, and denote it by

�X
01B
(\∗). Then, among all the models trained with the _s, we report

the model that has best ranking utility and satis�es n restriction:

*
∗
= max
_∈Λ |�X

01B
(\ ∗

_
)≤n

* (\∗
_
), (32)

where Λ is the grid of _ values in Table 3 used for training. We

plot the ranking cost 1 −* ∗ against a preset grid of upper bounds

for two con�dence values X = 0.95 and 0.99. Results for di�erent

MOO methods are plotted in Figure 3. When _ = 0, i.e., the model

is trained only for the relevance task, the result is plotted as a

horizontal black dashed line, labeled as ‘Only Rank’. Training

results are given in Appendix D.

6.3 Does WC Outperform LS?

In Figure 3, we �rst observe in all three datasets, none of the al-

gorithms generate a convex optimal frontier. This is an empirical

validation that the Fair LTR problem formulated using the Plackett-

Luce policy is a non-convex problem. Therefore, in all three datasets,

a major portion of the PF is not reached by LS.

For GermanCredit and E-Commerce datasets, the non-querywise

MOO methods WC, WC-MGDA and EPO-QP signi�cantly outper-

form the LS method in the restrictive fairness regions (lower n

values). However, for the less restricted fairness regions (higher n),
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Figure 3: Pareto Fronts obtained by di�erent MOO methods

on 3 datasets, where the axes are average ranking cost 1 −* ∗

(32) and upper bound n of probabilistic fairness violation (31).

LS has better performance. For MSLR datasets, the ranking utility

*
∗
of non-querywise MOO methods, except our matrix inversion

based EPO, did not increase with higher n values. In fact, they per-

formed similarly to the ‘Only Rank’ method (_ = 0), whose ranking

utility did not improve during training. The similarity between WC

and Only Rank can be attributed to the single objective selection of

WC method. For MSLR dataset, this objective happens to be only

the ranking objective. We reason the similarity between WC and its

QP based variants is due to the ℓ1 constraint (15a), which promotes

sparsity [11] in the coe�cients, thereby virtually choosing only

one objective. Whereas, our matrix inversion based EPO does not

have the ℓ1 constraint, therefore produces non-sparse coe�cients

to combine the gradients, and improves the ranking utility.

6.4 Does Querywise WC Improve Relevance?

In all three datasets we notice, for the restrictive fairness regions

(low n), the non-querywise MOO methods have better relevance

than the querywise methods. This is due to the heavily regular-

ized setup of querywise formulation, where the preference speci�c

ideal solution may not exist, as explained in Section 4.4. However,

when the fairness restrictions are slacked (high n), QWC has better

ranking utility than the non-querywise methods. Unlike the non-

querywise methods, the QP based algorithms, QEPO-QP and QWC-

MGDA in the German dataset, do not have similar performance

as QWC. Whereas the proposed matrix inversion based QEPO has
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Figure 5: Computational Improvements (ratio of time taken)

for, (left) sampling from PL distribution by sampling without

replacement compared to Gumbel max trick, and (right) com-

pute the double derivatives using automatic di�erentiation

compared to our implementation.

Table 4: Best Ranking Utilities *
∗
, when trained with non-

querywise MOO, querywise MOO, LS and only ranking task.

German MSLR-WEB30K E-Commerce

WC 0.6048 0.6393 0.9204

WC-MGDA 0.5514 0.6393 0.9204

EPO-QP 0.5951 0.6396 0.9146

EPO 0.5550 0.6645 0.9141

QWC 0.6008 0.6973 0.9196

QWC-MGDA 0.5653 – –

QEPO-QP 0.5542 – –

QEPO 0.6105 0.6546 0.9381

LS 0.6039 0.6948 0.9279

Only Rank 0.5981 0.6392 0.9204
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Figure 4: Standard Deviations of the ranking utility

similar performance to QWC. The best ranking utilities in moderate

fairness restriction regions of Figure 3 are reported in Table 4. The

querywise methods, i.e., QEPO for German and E-Commerce, and

QWC for MSLR-WEB30K, have the highest improvement from the

single task learning (Only Rank) result as compared to others.

An interesting observation is, even other MOO methods, e.g., LS

and WC, have better ranking utility than the Only Rank method.

This result advocates the use of fairness restriction in moderation

to improve the relevance of the LTR model.

In Figure 4, we compare the standard deviation of the ranking

utilities over the queries in the test dataset, when the model was

trained with di�erent values of fairness weight _. We see that in

MSLR-WEB30k and E-Commerce data, the querywise methods

have lesser standard deviations as compared to the non-querywise

methods. In German data the comparison is not conclusive. The

QP based querywise methods have higher standard deviation as

compared to QWC and the proposed matrix inversion based QEPO.

6.5 How E�cient is Our Implementation?

We measure computational e�ciency in two aspects. First, we an-

swer how much faster is the Gumbel max trick as compared to the

sampling without replacement method for sampling permutations

from PL distribution. Second, how much faster is our analytical

formulation of double-derivatives as compared to the automatic dif-

ferentiation? We consider di�erent batch sizes (number of queries),

slate lengths (number of items) and random scores, and plot the re-

sults in Figure 5. Each con�guration is run for 5 times on a NVIDIA
Tesla V100 GPU machine parallelizing wherever possible. We see

signi�cant improvements in both aspects.

In theory, the improvement in Gumbel max trick compared to

sampling without replacement should be linear, since the former

avoids the loop over the slate length that cannot be avoided in

the later. But for higher batch sizes (e.g. 1000 in left Figure 5), we

attribute the deviation from linear improvement to the time required

for excessive memory allocation in sampling w/o replacement.

We used the automatic di�erentiation of PyTorch [30] to com-

pute the hessian diagonals. It computes each element of the hes-

sian diagonal by a hessian vector product that involves two for-

ward/backward passes. This requires a for loop over the slate length

to compute all the double derivatives.Whereas our analytical formu-

lation vectorizes the computations and avoids the for loop. There-

fore, there is a linear improvement. Autodi� underperforms due to

the intricacies of creating and maintaining a computational graph.

7 CONCLUSION

We demonstrated that multi-objective optimization algorithms such

as Weighted Chebyshev scalarization based methods achieve better

relevance in ranking as compared to the linear scalarization used

in the literature. We developed querywise methods and analyzed

their di�erences from the non-querywise methods. Through the

querywise methods, we discovered a key insight: the seemingly

competing task of fairness, when imposed in moderation, bene�ts

the relevance task, instead of deteriorating it. Moreover, our e�cient

implementation of querywise and non-querywise MOO methods

can train fair LTR models on large-scale real world datasets.

Our research opens several avenues for future exploration, such

as examining the bias in the gradient estimates for the absolute

fairness loss, exploring the conditions for the non-existence of a

solution for QWC, and developing a splitting strategy of the queries

(non-uniform mini-batching of the training dataset) such that the

solution exists. We will make the source code public available.
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A PROOFS

Proposition 4.1. Let W = min �01B (.̂ ) be the minimum value of

absolute fairness violation when optimized without the ranking utility.

Then, irrespective of the structure of the PF, the optimal solution of

WC scalarization (13) w.r.t. r = [_, 1], where _ ≤ 1
W , guarantees that

�
∗
01B = n_ ≤ 1

_
.

Proof. The condition _ ≤ 1
W ensures the existence of a solution

with A1�
∗
01B = A2 (1 − * ∗) =⇒ _*

∗
01B = (1 − * ∗). We use the

normalized property of NDCG to avail *
∗ ≤ 1, since it is the mean

NDCG. Therefore, 1 −* ∗ ≤ 1, thus proving the proposition. □

Proposition 4.2. The restriction on the optimal model o�ered by

QWC is stricter than that of WC, i.e., Θr
Q
⊂ Θ

r.

Proof. Let \ ∈ Θ
r
Q
, and .̂\ = {ŷ\@ } be the scores when the

model parameter is \ . Then A1�01B (ŷ\@ ) = A2* (ŷ\@ ) for all @ ∈ [# ].
Taking the mean across all queries on both LHS and RHS, we get

A1
1

#

#∑

@=1

�01B (ŷ\@ ) = A2
1

#

#∑

@=1

* (ŷ\@ ) (33)

=⇒ A1�01B (.̂\ ) = A2* (.̂\ ) (34)

Therefore, \ ∈ Θr, thus proving the proposition. □

B DOUBLE DERIVATIVE

Alternative to (28) and (29), one may apply the log-derivative trick

twice to obtain the true double derivatives similar to the gradients

(24) and (26), and then approximate with a sample set. This would

result in

�m2*
m~̂28

=

1

|S|
∑

f∈S

((
m;c (f |ŷ)
m~̂8

)2
+ m

2;c (f |ŷ)
m~̂28

)
" (y, f), (35)

�m2�01B
m~̂28

=

1

|S|
∑

f∈S

((
m;c (f |ŷ)
m~̂8

)2
+ m

2;c (f |ŷ)
m~̂28

)
� (m, f), (36)

where ;c is short for log(c) and � = sign
(
�� (ŷ)

)
� . Also, to show-

case acceleration in training, we also compare with optimization

that does not use double derivatives, instead uses quasi-Newton

method with unit weight on the second order term. In Figure 6,

we show the training evolution when the model is trained only

for the ranking task on German Credit and E-Commerce datasets.

Clearly, the double derivatives of (28) accelerate the training, and
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Figure 6: Training results of double derivative methods. 1

stands for quasi-Newton with unit weight for 2nd order term.

the double derivatives of (35) do not improve the ranking utility

during training.

C WC-MGDA EXTENSION OF WC AND QWC

The WC-MGDA [27] leverages the Multi-Gradient Descent Algo-

rithm [9] to �nd search directions according to theWeighted Cheby-

chev scalarization. It solves a Second Order Cone Programming

(SOCP) problem in every iteration to �nd the combination coe�-

cients for the gradients w.r.t. a preference vector r:

max
" ∈R

2
+
,$
")

(
r ⊙ (cC − b)

)
− DW (37a)

s.t. U1 + U2 = 1 (37b)

∥�r" ∥ ≤ W, (37c)

where cC = [�01B (\C ), 1 −* (\C )] is the cost vector at C th iteration,

b is a reference point from which the search is carried out along

the r−1 ray in the objective space, �r = diag(
√
r)
√
�)�diag(

√
r)

where � = [∇\ �01B ,−∇\* ] contains the gradients at C th iteration.

WC-MGDA jointly solves WC and MGDA to ensure achieving

both preference alignment and Pareto Optimality. While the WC

problem tries to �nd solutions by minimizing weighted ℓ∞, the
norm minimization ensures Pareto Optimality.

In the querywise setup, the SOCP problem in (37) is solved for

every query. In particular, it is solved using the querywise cost cC =

[�01B (\C |@), 1−* (\C |@)], and gradients� = [∇\ �01B (·|@),−∇\* (·|@)].
Much like the Quadratic Programming (QP) based EPO Search, ex-

tending the SOCP basedWC-MGDA to querywise setup is computa-

tionally expensive. This is mainly due to lack of software packages

using which several QP/SOCP problems can be solved parallelly.

D TRAINING RESULTS

D.1 E-Commerce Dataset

Training results on E-Commerce dataset are shown in Figure 7a.

First, we notice the con�ict between the two tasks faced by all

the MOO methods. As the _ increases, the saturated ranking utility

decreases, the gap widens from single task learning, i.e., Only Rank.

Second, we see that coe�cient smoothness does improve the

results for all the WC based methods. The smoothness is not appli-

cable to LS since its coe�cients remain static.

Lastly, we observe an interesting phenomenon at _ = 80. Our

matrix inversion based querywise EPO search method outperforms

the Only Rank method despite such a high _. We attribute this to

the inductive bias e�ect discussed in Section (4.4).

D.2 German Credit Dataset

The training results for German Credit datasets are shown in Figure

7b. The results are similar to that of E-Commerce datasets. As the

fairness weight _ increases, the saturated ranking utility decreases,

i.e., the gap between the single task learning based Only Rank and

other MOO methods widens. The e�ect of smoothing is unclear.

For B = 0.3 and 0.5, the performance of WC seems to be worse as

compared to B = 0.0, but it improves for B = 0.7, e.g. at _ = 1. and 5.

For the matrix inversion based EPO, increasing smoothness seems

to worsen the performance, except for _ = 80, where higher B has

better ranking utility. An interesting observation is that, although

the QWC and the matrix inversion based QEPO does not surpass
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Figure 7: Training results of di�erent MOO methods for various settings of _ and smoothness factor B.
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Figure 8: Training results of di�erent MOO methods on

MSLR-WEB30k dataset for various settings of _ and smooth-

ness factor B.

the results of other MOO methods in the training datasets in Figure

7b, it does surpass signi�cantly in the test dataset, as shown in
Table 3 of the main paper. This can be attributed to the bene�cial

e�ects, such as regularization and inductive bias, of the querywise

approach. The QP and SOCP based QEPO Search and QWC-MGDA

have similar performance in the training dataset, but did not have

better ranking utility in the test dataset.

D.3 MSLR-WEB30K Dataset:

The training results forMSLR-WEB30K datasets are shown in Figure

8.

For the MSLR-WEB30K dataset, the single task learning, i.e.,

Only Rank, is not able to improve the Plackett-Luce based ranking

utility. This is re�ected also in the MOO methods at lower values

of fairness weights, i.e. _ ≤ 5. We tested with di�erent values of

learning rates and tree parameters, such as maximum depth and

number of iterations, to see if the training results improved. For all

these experiments with lower value of _, the pattern was similar

to that in Figure 8. However, with increasing _ the improvement

in ranking utility is clearly visible, especially in LS, QWC and the

matrix inversion based EPO. At _ = 80, the behavior is similar to

that in the E-Commerce dataset; there is a sharp increase in the

ranking utility despite the high value of _, and this increment is

highest for the querywise WC method. This result of QWC is also

re�ected in the test dataset as reported in Table 3 of the main paper.

The smoothing factor did not seem to improve the results as it did

in the E-Commerce dataset.
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